diff options
Diffstat (limited to 'methods')
-rw-r--r-- | methods/conjugate_gradient/conjugate_gradient.hpp | 188 |
1 files changed, 188 insertions, 0 deletions
diff --git a/methods/conjugate_gradient/conjugate_gradient.hpp b/methods/conjugate_gradient/conjugate_gradient.hpp new file mode 100644 index 0000000..3fb0f8b --- /dev/null +++ b/methods/conjugate_gradient/conjugate_gradient.hpp @@ -0,0 +1,188 @@ +/** + \file conjugate_gradient.hpp + \brief powerll optimization method + \author Junhua Gu + */ + +#ifndef CONJUGATE_GRADIENT +#define CONJUGATE_GRADIENT +#define OPT_HEADER +#include <core/optimizer.hpp> +//#include <blitz/array.h> +#include <limits> +#include <cassert> +#include <cmath> +#include "../linmin/linmin.hpp" +#include <algorithm> +#include <iostream> +#include <math/num_diff.hpp> +namespace opt_utilities +{ + /** + \brief Impliment of an optimization method + \tparam rT return type of the object function + \tparam pT parameter type of the object function + */ + template <typename rT,typename pT> + class conjugate_gradient + :public opt_method<rT,pT> + { + public: + typedef pT array1d_type; + typedef rT T; + private: + func_obj<rT,pT>* p_fo; + optimizer<rT,pT>* p_optimizer; + volatile bool bstop; + + const char* do_get_type_name()const + { + return "conjugate gradient"; + } + private: + array1d_type start_point; + array1d_type end_point; + + private: + rT threshold; + private: + rT func(const pT& x) + { + assert(p_fo!=0); + return p_fo->eval(x); + } + + + private: + + + + public: + + conjugate_gradient() + :threshold(1e-4) + {} + + virtual ~conjugate_gradient() + { + }; + + conjugate_gradient(const conjugate_gradient<rT,pT>& rhs) + :opt_method<rT,pT>(rhs),p_fo(rhs.p_fo),p_optimizer(rhs.p_optimizer), + start_point(rhs.start_point), + end_point(rhs.end_point), + threshold(rhs.threshold) + { + } + + conjugate_gradient<rT,pT>& operator=(const conjugate_gradient<rT,pT>& rhs) + { + threshold=rhs.threshold; + p_fo=rhs.p_fo; + p_optimizer=rhs.p_optimizer; + start_point=rhs.start_point; + end_point=rhs.end_point; + threshold=rhs.threshold; + } + + opt_method<rT,pT>* do_clone()const + { + return new conjugate_gradient<rT,pT>(*this); + } + + void do_set_start_point(const array1d_type& p) + { + resize(start_point,get_size(p)); + opt_eq(start_point,p); + } + + array1d_type do_get_start_point()const + { + return start_point; + } + + void do_set_lower_limit(const array1d_type& p) + {} + + void do_set_upper_limit(const array1d_type& p) + {} + + void do_set_precision(rT t) + { + threshold=t; + } + + rT do_get_precision()const + { + return threshold; + } + + void do_set_optimizer(optimizer<rT,pT>& o) + { + p_optimizer=&o; + p_fo=p_optimizer->ptr_func_obj(); + } + + + + pT do_optimize() + { + bstop=false; + opt_eq(end_point,start_point); + pT xn; + opt_eq(xn,start_point); + pT Delta_Xn1(gradient(*p_fo,start_point)); + for(size_t i=0;i<get_size(start_point);++i)Delta_Xn1[i]=-Delta_Xn1[i]; + rT alpha=0; + linmin(start_point,Delta_Xn1,alpha,(*p_fo)); + for(size_t i=0;i<get_size(start_point);++i)xn[i]=start_point[i]+alpha*Delta_Xn1[i]; + pT LX; + opt_eq(LX,Delta_Xn1); + for(int n=1;;++n) + { + pT Delta_Xn(gradient(*p_fo,xn)); + for(size_t i=0;i<get_size(start_point);++i)Delta_Xn[i]=-Delta_Xn[i]; + ////calc beta n + rT betan; + rT b1(0),b2(0); + for(size_t i=0;i<get_size(start_point);++i) + { + b1+=Delta_Xn[i]*(Delta_Xn[i]-Delta_Xn1[i]); + b2+=Delta_Xn1[i]*Delta_Xn1[i]; + } + betan=max(rT(0),b1/b2); + //// + for(size_t i=0;i<get_size(start_point);++i) + LX[i]=Delta_Xn[i]+betan*LX[i]; + linmin(xn,LX,alpha,(*p_fo)); + for(size_t i=0;i<get_size(start_point);++i) + xn[i]+=alpha*LX[i]; + rT delta=0; + rT xn_abs=0; + for(size_t i=0;i<get_size(start_point);++i) + { + delta+=LX[i]*LX[i]; + xn_abs+=xn[i]*xn[i]; + } + if(delta*alpha*alpha<threshold) + { + opt_eq(end_point,xn); + break; + } + opt_eq(Delta_Xn1,Delta_Xn); + } + return end_point; + } + + void do_stop() + { + bstop=true; + } + + }; + +} + + +#endif +//EOF |