aboutsummaryrefslogtreecommitdiffstats
path: root/methods
diff options
context:
space:
mode:
Diffstat (limited to 'methods')
-rw-r--r--methods/conjugate_gradient/conjugate_gradient.hpp188
1 files changed, 188 insertions, 0 deletions
diff --git a/methods/conjugate_gradient/conjugate_gradient.hpp b/methods/conjugate_gradient/conjugate_gradient.hpp
new file mode 100644
index 0000000..3fb0f8b
--- /dev/null
+++ b/methods/conjugate_gradient/conjugate_gradient.hpp
@@ -0,0 +1,188 @@
+/**
+ \file conjugate_gradient.hpp
+ \brief powerll optimization method
+ \author Junhua Gu
+ */
+
+#ifndef CONJUGATE_GRADIENT
+#define CONJUGATE_GRADIENT
+#define OPT_HEADER
+#include <core/optimizer.hpp>
+//#include <blitz/array.h>
+#include <limits>
+#include <cassert>
+#include <cmath>
+#include "../linmin/linmin.hpp"
+#include <algorithm>
+#include <iostream>
+#include <math/num_diff.hpp>
+namespace opt_utilities
+{
+ /**
+ \brief Impliment of an optimization method
+ \tparam rT return type of the object function
+ \tparam pT parameter type of the object function
+ */
+ template <typename rT,typename pT>
+ class conjugate_gradient
+ :public opt_method<rT,pT>
+ {
+ public:
+ typedef pT array1d_type;
+ typedef rT T;
+ private:
+ func_obj<rT,pT>* p_fo;
+ optimizer<rT,pT>* p_optimizer;
+ volatile bool bstop;
+
+ const char* do_get_type_name()const
+ {
+ return "conjugate gradient";
+ }
+ private:
+ array1d_type start_point;
+ array1d_type end_point;
+
+ private:
+ rT threshold;
+ private:
+ rT func(const pT& x)
+ {
+ assert(p_fo!=0);
+ return p_fo->eval(x);
+ }
+
+
+ private:
+
+
+
+ public:
+
+ conjugate_gradient()
+ :threshold(1e-4)
+ {}
+
+ virtual ~conjugate_gradient()
+ {
+ };
+
+ conjugate_gradient(const conjugate_gradient<rT,pT>& rhs)
+ :opt_method<rT,pT>(rhs),p_fo(rhs.p_fo),p_optimizer(rhs.p_optimizer),
+ start_point(rhs.start_point),
+ end_point(rhs.end_point),
+ threshold(rhs.threshold)
+ {
+ }
+
+ conjugate_gradient<rT,pT>& operator=(const conjugate_gradient<rT,pT>& rhs)
+ {
+ threshold=rhs.threshold;
+ p_fo=rhs.p_fo;
+ p_optimizer=rhs.p_optimizer;
+ start_point=rhs.start_point;
+ end_point=rhs.end_point;
+ threshold=rhs.threshold;
+ }
+
+ opt_method<rT,pT>* do_clone()const
+ {
+ return new conjugate_gradient<rT,pT>(*this);
+ }
+
+ void do_set_start_point(const array1d_type& p)
+ {
+ resize(start_point,get_size(p));
+ opt_eq(start_point,p);
+ }
+
+ array1d_type do_get_start_point()const
+ {
+ return start_point;
+ }
+
+ void do_set_lower_limit(const array1d_type& p)
+ {}
+
+ void do_set_upper_limit(const array1d_type& p)
+ {}
+
+ void do_set_precision(rT t)
+ {
+ threshold=t;
+ }
+
+ rT do_get_precision()const
+ {
+ return threshold;
+ }
+
+ void do_set_optimizer(optimizer<rT,pT>& o)
+ {
+ p_optimizer=&o;
+ p_fo=p_optimizer->ptr_func_obj();
+ }
+
+
+
+ pT do_optimize()
+ {
+ bstop=false;
+ opt_eq(end_point,start_point);
+ pT xn;
+ opt_eq(xn,start_point);
+ pT Delta_Xn1(gradient(*p_fo,start_point));
+ for(size_t i=0;i<get_size(start_point);++i)Delta_Xn1[i]=-Delta_Xn1[i];
+ rT alpha=0;
+ linmin(start_point,Delta_Xn1,alpha,(*p_fo));
+ for(size_t i=0;i<get_size(start_point);++i)xn[i]=start_point[i]+alpha*Delta_Xn1[i];
+ pT LX;
+ opt_eq(LX,Delta_Xn1);
+ for(int n=1;;++n)
+ {
+ pT Delta_Xn(gradient(*p_fo,xn));
+ for(size_t i=0;i<get_size(start_point);++i)Delta_Xn[i]=-Delta_Xn[i];
+ ////calc beta n
+ rT betan;
+ rT b1(0),b2(0);
+ for(size_t i=0;i<get_size(start_point);++i)
+ {
+ b1+=Delta_Xn[i]*(Delta_Xn[i]-Delta_Xn1[i]);
+ b2+=Delta_Xn1[i]*Delta_Xn1[i];
+ }
+ betan=max(rT(0),b1/b2);
+ ////
+ for(size_t i=0;i<get_size(start_point);++i)
+ LX[i]=Delta_Xn[i]+betan*LX[i];
+ linmin(xn,LX,alpha,(*p_fo));
+ for(size_t i=0;i<get_size(start_point);++i)
+ xn[i]+=alpha*LX[i];
+ rT delta=0;
+ rT xn_abs=0;
+ for(size_t i=0;i<get_size(start_point);++i)
+ {
+ delta+=LX[i]*LX[i];
+ xn_abs+=xn[i]*xn[i];
+ }
+ if(delta*alpha*alpha<threshold)
+ {
+ opt_eq(end_point,xn);
+ break;
+ }
+ opt_eq(Delta_Xn1,Delta_Xn);
+ }
+ return end_point;
+ }
+
+ void do_stop()
+ {
+ bstop=true;
+ }
+
+ };
+
+}
+
+
+#endif
+//EOF