1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
/**
\file normed_dgauss1d.hpp
\brief normalized double gaussian distribution
\author Junhua Gu
*/
#ifndef NDGAUSS_MODEL_H_
#define NDGAUSS_MODEL_H_
#define OPT_HEADER
#include <core/fitter.hpp>
#include <cmath>
#include <misc/optvec.hpp>
namespace opt_utilities
{
template <typename T>
class normed_dgauss1d
:public model<optvec<T>,optvec<T>,optvec<T>,std::string>
{
private:
normed_dgauss1d* do_clone()const
{
return new normed_dgauss1d<T>(*this);
}
const char* do_get_type_name()const
{
return "1d double normed gaussian";
}
public:
normed_dgauss1d()
{
this->push_param_info(param_info<optvec<T> >("x01",0));
this->push_param_info(param_info<optvec<T> >("sigma1",1));
this->push_param_info(param_info<optvec<T> >("x02",0.1));
this->push_param_info(param_info<optvec<T> >("sigma2",1));
this->push_param_info(param_info<optvec<T> >("theta",1));
}
public:
optvec<T> do_eval(const optvec<T>& x,const optvec<T>& param)
{
const double pi=3.14159265358979323846;
T x01=get_element(param,0);
T sigma1=get_element(param,1);
T x02=get_element(param,2);
T sigma2=get_element(param,3);
T theta=get_element(param,4);
if(sigma1*sigma1<std::numeric_limits<double>::epsilon())
{
sigma1=std::numeric_limits<double>::epsilon();
}
if(sigma2*sigma2<std::numeric_limits<double>::epsilon())
{
sigma2=std::numeric_limits<double>::epsilon();
}
T N1=1/sqrt(sigma1*sigma1*pi*2);
T N2=1/sqrt(sigma2*sigma2*pi*2);
optvec<T> y1=(x-x01)/sigma1;
optvec<T> y2=(x-x02)/sigma2;
T r1=sin(theta);
T r2=cos(theta);
return r1*r1*N1*exp(-y1*y1/2.)+r2*r2*N2*exp(-y2*y2/2.);;
}
private:
std::string do_get_information()const
{
#ifdef WITH_OPT_DOC
#include <model_doc/normed_dgauss1d.info>
#endif
return "";
}
};
}
#endif
//EOF
|