1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
/**
\file aga.hpp
\brief asexual genetic algorithm method
*/
#ifndef AGA_METHOD
#define AGA_METHOD
#define OPT_HEADER
#include <core/optimizer.hpp>
//#include <blitz/array.h>
#include <limits>
#include <cstdlib>
#include <core/opt_traits.hpp>
#include <cassert>
#include <cmath>
#include <vector>
#include <algorithm>
/*
*
*/
#include <iostream>
using std::cout;
using std::endl;
namespace opt_utilities
{
template <typename rT,typename pT>
struct vp_pair
{
rT v;
pT p;
};
template <typename rT,typename pT>
class vp_comp
{
public:
bool operator()(const vp_pair<rT,pT>& x1,
const vp_pair<rT,pT>& x2)
{
return x1.v<x2.v;
}
};
/**
\brief Implement of the asexual genetic algorithm
2009A&A...501.1259C
http://adsabs.harvard.edu/abs/2009arXiv0905.3712C
\tparam rT return type of the object function
\tparam pT parameter type of the object function
*/
template <typename rT,typename pT>
class aga_method
:public opt_method<rT,pT>
{
public:
typedef pT array1d_type;
private:
int n1,n2,n0;
func_obj<rT,pT>* p_fo;
optimizer<rT,pT>* p_optimizer;
rT threshold;
pT lower_bound;
pT upper_bound;
typename element_type_trait<pT>::element_type decay_factor;
pT reproduction_box;
std::vector<vp_pair<rT,pT> > samples;
std::vector<pT> buffer;
private:
typename element_type_trait<pT>::element_type uni_rand
(typename element_type_trait<pT>::element_type x1,
typename element_type_trait<pT>::element_type x2)
{
return rand()/(double)RAND_MAX*(x2-x1)+x1;
}
private:
rT func(const pT& x)
{
assert(p_fo!=0);
return p_fo->eval(x);
}
public:
aga_method(int _n1,int _n2)
:threshold(1e-4),p_fo(0),p_optimizer(0),
n1(_n1),n2(_n2),samples(n1*n2+n1),n0(n1*n2+n1),
decay_factor(.999)
{
}
aga_method()
:threshold(1e-4),p_fo(0),p_optimizer(0),
n1(50),n2(20),samples(n1*n2+n1),n0(n1*n2+n1),
decay_factor(.999)
{
}
virtual ~aga_method()
{
};
aga_method(const aga_method<rT,pT>& rhs)
:threshold(rhs.threshold),
p_fo(rhs.p_fo),p_optimizer(rhs.p_optimizer),
n1(rhs.n1),n2(rhs.n2),
samples(rhs.samples),n0(rhs.n0)
{
}
aga_method<rT,pT>& operator=(const aga_method<rT,pT>& rhs)
{
threshold=rhs.threshold;
p_fo=rhs.p_fo;
p_optimizer=rhs.p_optimizer;
samples=rhs.samples;
n1=rhs.n1;
n2=rhs.n2;
n0=rhs.n0;
}
void set_decay_factor(typename element_type_trait<pT>::element_type _decay_factor)
{
decay_factor=_decay_factor;
}
opt_method<rT,pT>* do_clone()const
{
return new aga_method<rT,pT>(*this);
}
void do_set_start_point(const array1d_type& p)
{
for(int i=0;i<samples.size();++i)
{
// cout<<i<<" ";
resize(samples[i].p,get_size(p));
// std::cout<<samples[i].p.size()<<std::endl;;
for(int j=0;j<get_size(p);++j)
{
set_element(samples[i].p,j,
uni_rand(get_element(lower_bound,j),
get_element(upper_bound,j))
);
}
}
}
array1d_type do_get_start_point()const
{
return array1d_type();
}
void do_set_lower_limit(const array1d_type& p)
{
opt_eq(lower_bound,p);
}
array1d_type do_get_lower_limit()const
{
return lower_bound;
}
void do_set_upper_limit(const array1d_type& p)
{
opt_eq(upper_bound,p);
}
array1d_type do_get_upper_limit()const
{
return upper_bound;
}
void do_set_precision(rT t)
{
threshold=t;
}
rT do_get_precision()const
{
return threshold;
}
void do_set_optimizer(optimizer<rT,pT>& o)
{
p_optimizer=&o;
p_fo=p_optimizer->ptr_func_obj();
}
bool iter()
{
rT sum2=0;
rT sum=0;
for(int i=0;i<samples.size();++i)
{
samples[i].v=func(samples[i].p);
sum2+=samples[i].v*samples[i].v;
sum+=samples[i].v;
}
std::sort(samples.begin(),samples.end(),vp_comp<rT,pT>());
if(sum2/samples.size()-pow(sum/samples.size(),2)<threshold)
{
return false;
}
pT lb(get_size(samples[0].p));
pT ub(get_size(samples[0].p));
for(int i=0;i<n2;++i)
{
pT p(samples[i].p);
for(int j=0;j<get_size(p);++j)
{
if(i==0)
{
ub[j]=p[j];
lb[j]=p[j];
}
ub[j]=std::max(ub[j],p[j]);
lb[j]=std::min(lb[j],p[j]);
set_element(p,j,
get_element(p,j)+
uni_rand(-get_element(reproduction_box,j),
get_element(reproduction_box,j)));
if(get_element(p,j)>get_element(upper_bound,j))
{
set_element(p,j,get_element(upper_bound,j));
}
if(get_element(p,j)<get_element(lower_bound,j))
{
set_element(p,j,get_element(lower_bound,j));
}
}
buffer[i]=p;
}
for(int i=0;i<n1;++i)
{
for(int j=0;j<n2;++j)
{
pT p(samples[i].p);
for(int k=0;k<get_size(p);++k)
{
set_element(samples[i*n2+j+n1].p,k,
(get_element(samples[i].p,k)+
get_element(buffer[j],k))/2.);
ub[k]=std::max(ub[k],samples[i*n2+j+n1].p[k]);
lb[k]=std::min(lb[k],samples[i*n2+j+n1].p[k]);
}
}
}
double n_per_dim=pow((double)n0,1./get_size(lower_bound));
for(int i=0;i<get_size(reproduction_box);++i)
{
// set_element(reproduction_box,i,
//get_element(reproduction_box,i)*decay_factor);
set_element(reproduction_box,i,
(get_element(ub,i)-
get_element(ub,i))/n_per_dim);
}
return true;
}
pT do_optimize()
{
srand(time(0));
buffer.resize(n2);
double n_per_dim=pow((double)n0,1./get_size(lower_bound));
resize(reproduction_box,get_size(lower_bound));
for(int i=0;i<get_size(lower_bound);++i)
{
set_element(reproduction_box,i,
(get_element(upper_bound,i)-
get_element(lower_bound,i))/n_per_dim);
}
while(iter()){}
return samples.begin()->p;
}
};
}
#endif
//EOF
|