aboutsummaryrefslogtreecommitdiffstats
path: root/methods/gsl_simplex/gsl_simplex.hpp
blob: 5297e7a468d93f7dcacb65bee254d1fb9456e78e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
/**
   \file gsl_simplex.hpp
 */

#ifndef GSL_SIMPLEX_METHOD
#define GSL_SIMPLEX_METHOD
#define OPT_HEADER
#include <core/optimizer.hpp>
//#include <blitz/array.h>
#include <vector>
#include <limits>
#include <cassert>
#include <cmath>
#include <algorithm>
#include <gsl_multimin.h>
#include <iostream>


namespace opt_utilities
{

  /**
     \brief object function of the gsl simplex function
   */
  template <typename rT,typename pT>
  double gsl_func_adapter(const gsl_vector* v,void* params)
  {
    pT temp;
    temp.resize(v->size);
    for(size_t i=0;i<get_size(temp);++i)
      {
	set_element(temp,i,gsl_vector_get(v,i));
      }
    return ((func_obj<rT,pT>*)params)->eval(temp);
  }


  /**
     \brief wrapper for the gsl simplex optimization method
     \tparam return type of the object function
     \tparam param type of the object function
  */
  template <typename rT,typename pT>
  class gsl_simplex
    :public opt_method<rT,pT>
  {
  public:
    typedef pT array1d_type;
    typedef rT T;
  private:
    func_obj<rT,pT>* p_fo;
    optimizer<rT,pT>* p_optimizer;
    
    //typedef blitz::Array<rT,2> array2d_type;
    
    
  private:
    array1d_type start_point;
    array1d_type end_point;
    
  private:
    rT threshold;
  private:
    rT func(const pT& x)
    {
      assert(p_fo!=0);
      return p_fo->eval(x);
    }

   
  public:
    gsl_simplex()
      :threshold(1e-4)
    {}

    virtual ~gsl_simplex()
    {
    };

    gsl_simplex(const gsl_simplex<rT,pT>& rhs)
      :p_fo(rhs.p_fo),p_optimizer(rhs.p_optimizer),
       start_point(rhs.start_point),
       end_point(rhs.end_point),
       threshold(rhs.threshold)
    {
    }

    gsl_simplex<rT,pT>& operator=(const gsl_simplex<rT,pT>& rhs)
    {
      threshold=rhs.threshold;
      p_fo=rhs.p_fo;
      p_optimizer=rhs.p_optimizer;
      opt_eq(start_point,rhs.start_point);
      opt_eq(end_point,rhs.end_point);
    }
    
    opt_method<rT,pT>* do_clone()const
    {
      return new gsl_simplex<rT,pT>(*this);
    }
    
    void do_set_start_point(const array1d_type& p)
    {
      start_point.resize(get_size(p));
      opt_eq(start_point,p);
      
    }

    array1d_type do_get_start_point()const
    {
      return start_point;
    }

    void do_set_precision(rT t)
    {
      threshold=t;
    }

    rT do_get_precision()const
    {
      return threshold;
    }

    void do_set_optimizer(optimizer<rT,pT>& o)
    {
      p_optimizer=&o;
      p_fo=p_optimizer->ptr_func_obj();
    }
    
    
    
    pT do_optimize()
    {
      const gsl_multimin_fminimizer_type *T = 
	gsl_multimin_fminimizer_nmsimplex;
      gsl_multimin_fminimizer *s = NULL;
      gsl_vector *ss, *x;
      gsl_multimin_function minex_func;
      
      size_t iter = 0;
      int status;
      double size;
      
      /* Starting point */
      x = gsl_vector_alloc (get_size(start_point));
      //      gsl_vector_set (x, 0, 5.0);
      //gsl_vector_set (x, 1, 7.0);
      for(size_t i=0;i!=get_size(start_point);++i)
	{
	  gsl_vector_set(x,i,get_element(start_point,i));
	}


      /* Set initial step sizes to 1 */
      ss = gsl_vector_alloc (get_size(start_point));
      gsl_vector_set_all (ss, 1.0);


      //foo f;
      /* Initialize method and iterate */
      minex_func.n = get_size(start_point);
      minex_func.f = &gsl_func_adapter<double,std::vector<double> >;
      minex_func.params = (void *)p_fo;
      
      s = gsl_multimin_fminimizer_alloc (T, get_size(start_point));
      gsl_multimin_fminimizer_set (s, &minex_func, x, ss);
      
      do
	{
	  iter++;
	  status = gsl_multimin_fminimizer_iterate(s);
	  
	  if (status) 
	    {
	      break;
	    }
	  //std::cerr<<"threshold="<<threshold<<std::endl;
	  size = gsl_multimin_fminimizer_size (s);
	  status = gsl_multimin_test_size (size, threshold);
	  
	  if (status == GSL_SUCCESS)
	    {
	      //printf ("converged to minimum at\n");
	    }
	  
	  //printf ("%5d %10.3e %10.3ef f() = %7.3f size = %.3f\n", 
	  //iter,
	  //gsl_vector_get (s->x, 0), 
	  //gsl_vector_get (s->x, 1), 
	  //  s->fval, size);
	}
      while (status == GSL_CONTINUE);
      
      /*
	foo f;
	gsl_vector_set (x, 0, 0.0);
	gsl_vector_set (x, 1, 0.0);
	cout<<"fdsa ";
	cout<<gsl_func_adapter<double,vector<double> >(x,(void*)&f)<<endl;;
	
      */
      
      end_point.resize(get_size(start_point));
      for(size_t i=0;i<get_size(start_point);++i)
	{
	  set_element(end_point,i,gsl_vector_get(s->x,i));
	}

      gsl_vector_free(x);
      gsl_vector_free(ss);
      gsl_multimin_fminimizer_free (s);
      
      
      return end_point;
    } 
  };
  
}


#endif
//EOF