1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
/**
\file dbeta2d3.hpp
\brief 2d double beta model
\author Junhua Gu
*/
#ifndef DDBETA3_MODEL2d2_H_
#define DDBETA3_MODEL2d2_H_
#define OPT_HEADER
#include <core/fitter.hpp>
#include <cmath>
#include <cassert>
#include "vecn.hpp"
namespace opt_utilities
{
template <typename T>
class dbeta2d3
:public model<T,vecn<T,2>,std::vector<T>,std::string>
{
private:
model<T,vecn<T,2>,std::vector<T> >* do_clone()const
{
return new dbeta2d3<T>(*this);
}
const char* do_get_type_name()const
{
return "2d double beta model 3";
}
public:
dbeta2d3()
{
this->push_param_info(param_info<std::vector<T> >("x0",256));//1
this->push_param_info(param_info<std::vector<T> >("y0",256));//2
this->push_param_info(param_info<std::vector<T> >("epsilon",0));//3
this->push_param_info(param_info<std::vector<T> >("theta",0));//4
this->push_param_info(param_info<std::vector<T> >("ampl1",1));//5
this->push_param_info(param_info<std::vector<T> >("beta1",0.6));//6
this->push_param_info(param_info<std::vector<T> >("r01",30));//7
this->push_param_info(param_info<std::vector<T> >("ampl2",.5));//8
this->push_param_info(param_info<std::vector<T> >("beta2",.4));//9
this->push_param_info(param_info<std::vector<T> >("r02",20));//10
this->push_param_info(param_info<std::vector<T> >("bkg",0));//11
}
T do_eval(const vecn<T,2>& xy,const std::vector<T>& param)
{
T x=xy[0];
T y=xy[1];
T x0=get_element(param,0);
T y0=get_element(param,1);
T epsilon=get_element(param,2);
T theta=get_element(param,3);
T ampl1=(get_element(param,4));
T beta1=(get_element(param,5));
T r01=(get_element(param,6));
T ampl2=(get_element(param,7));
T beta2=(get_element(param,8));
T r02=(get_element(param,9));
T bkg=get_element(param,10);
T x_new1=(x-x0)*cos(theta)+(y-y0)*sin(theta);
T y_new1=(y-y0)*cos(theta)-(x-x0)*sin(theta);
T r1_r1=x_new1*x_new1/exp(epsilon/30)+y_new1*y_new1/exp(-epsilon/30);
//T r1=sqrt(x_new1*x_new1*(1-epsilon)*(1-epsilon)+y_new1*y_new1)/(1-epsilon);
T x_new2=(x-x0)*cos(theta)+(y-y0)*sin(theta);
T y_new2=(y-y0)*cos(theta)-(x-x0)*sin(theta);
T r2_r2=x_new2*x_new2/exp(epsilon/30)+y_new2*y_new2/exp(-epsilon/30);
//T r2=sqrt(x_new2*x_new2*(1-epsilon)*(1-epsilon)+y_new2*y_new2)/(1-epsilon);
return bkg+ampl1*pow(1+(r1_r1/r01/r01),-3*beta1+static_cast<T>(.5))
+ampl2*pow(1+(r2_r2/r02/r02),-3*beta2+static_cast<T>(.5));
//return bkg+pow(1+r1*r1/r01/r01,-3*beta1+static_cast<T>(.5))+
//pow(1+r2*r2/r02/r02,-3*beta2+static_cast<T>(.5));
}
};
}
#endif
//EOF
|