1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
#ifndef GAUSS_MODEL_H_
#define GAUSS_MODEL_H_
#define OPT_HEADER
#include <core/fitter.hpp>
#include <cmath>
namespace opt_utilities
{
template <typename T>
class gauss1d
:public model<T,T,std::vector<T>,std::string>
{
private:
model<T,T,std::vector<T> >* do_clone()const
{
return new gauss1d<T>(*this);
}
const char* do_get_type_name()const
{
return "1d gaussian";
}
public:
gauss1d()
{
this->push_param_info(param_info<std::vector<T> >("N",1));
this->push_param_info(param_info<std::vector<T> >("x0",0));
this->push_param_info(param_info<std::vector<T> >("sigma",1));
}
public:
T do_eval(const T& x,const std::vector<T>& param)
{
T N=get_element(param,0);
T x0=get_element(param,1);
T sigma=get_element(param,2);
T y=(x-x0)/2./sigma;
return N*exp(-y*y);
}
private:
std::string do_get_information()const
{
return "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\" class=\"equation\"><mi>f</mi><mrow><mo class=\"MathClass-open\">(</mo><mrow><mi>x</mi><mo class=\"MathClass-punc\">;</mo><mi>N</mi><mo class=\"MathClass-punc\">,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo class=\"MathClass-punc\">,</mo><mi>σ</mi></mrow><mo class=\"MathClass-close\">)</mo></mrow> <mo class=\"MathClass-rel\">=</mo> <mi>N</mi><msup><mrow><mi>e</mi></mrow><mrow><mo class=\"MathClass-bin\">−</mo><mfrac><mrow><msup><mrow><mrow><mo class=\"MathClass-open\">(</mo><mrow><mi>x</mi><mo class=\"MathClass-bin\">−</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo class=\"MathClass-close\">)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn><msup><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac> </mrow></msup></math>";
}
};
}
#endif
//EOF
|