aboutsummaryrefslogtreecommitdiffstats
path: root/models/polar_ellipse.hpp
blob: 0d97ffbcc8894536bfe11ee69739efad2375ec90 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/**
   \file polar_ellipse.hpp
   \brief defing ellipse in polar coordinate
   \author Junhua Gu
 */



#ifndef PELLIPSE_MODEL_H_
#define PELLIPSE_MODEL_H_
#define OPT_HEADER
#include <core/fitter.hpp>
#include <cmath>

namespace opt_utilities
{
  template <typename T>
  class polar_ellipse
    :public model<T,T,std::vector<T>,std::string>
  {
  private:
    model<T,T,std::vector<T> >* do_clone()const
    {
      return new polar_ellipse<T>(*this);
    }

    const char* do_get_type_name()const
    {
      return "ellipse in polar coordinate system";
    }
  public:
    polar_ellipse()
    {
      this->push_param_info(param_info<std::vector<T> >("a",1,0,10));
      this->push_param_info(param_info<std::vector<T> >("e",0,0,1));
      this->push_param_info(param_info<std::vector<T> >("theta0",0,0,360));
    }

  public:
    T do_eval(const T& x,const std::vector<T>& param)
    {
      double a=param[0];
      double e=param[1];
      double t0=param[2];
      double t=x-t0;
      t=t/180.*3.14159265358979;
      return a*(1-e*e)/(1-e*cos(t));
    }

  private:
    std::string do_get_information()const
    {
      return "polar elliptical\n";
	//"y=k*x+b\n";
    }
  };
}



#endif
//EOF