aboutsummaryrefslogtreecommitdiffstats
path: root/statistics/leastsq.hpp
blob: 6ff3b62dcef074149104ac8ba6f3acf9354b2c65 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
/**
   \file leastsq.hpp
 */

#ifndef LEAST_SQ_HPP
#define LEAST_SQ_HPP
#define OPT_HEADER
#include <core/fitter.hpp>
#include <iostream>
#include <vector>
#include <cmath>
using std::cerr;using std::endl;

namespace opt_utilities
{

   /**
      \brief least-square statistic
      \tparam Ty the return type of model
      \tparam Tx the type of the self-var
      \tparam Tp the type of model parameter
      \tparam Ts the type of the statistic
      \tparam Tstr the type of the string used
   */
  template<typename Ty,typename Tx,typename Tp,typename Ts,typename Tstr>
  class leastsq
    :public statistic<Ty,Tx,Tp,Ts,Tstr>
  {
  private:
    bool verb;
    int n;
    
    
    statistic<Ty,Tx,Tp,Ts,Tstr>* do_clone()const
    {
      // return const_cast<statistic<Ty,Tx,Tp>*>(this);
      return new leastsq<Ty,Tx,Tp,Ts,Tstr>(*this);
    }

    const char* do_get_type_name()const
    {
      return "least square statistic";
    }
    
  public:
    void verbose(bool v)
    {
      verb=v;
    }
  public:
    leastsq()
      :verb(false)
    {}
    
    

    Ts do_eval(const Tp& p)
    {
      Ts result(0);
      for(int i=(this->get_data_set()).size()-1;i>=0;--i)
	{
	  Ty chi=(this->get_data_set().get_data(i).get_y()-eval_model(this->get_data_set().get_data(i).get_x(),p));
	  result+=chi*chi;

	}
      if(verb)
	{
	  n++;
	  if(n%10==0)
	    {

	      cerr<<result<<"\t";
	      for(size_t i=0;i<get_size(p);++i)
		{
		  cerr<<get_element(p,i)<<",";
		}
	      cerr<<endl;
	    }

	}
      
      return result;
    }
  };
  
}

#endif
//EOF