1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
|
/**
\file leastsq.hpp
*/
#ifndef LEAST_SQ_HPP
#define LEAST_SQ_HPP
#define OPT_HEADER
#include <core/fitter.hpp>
#include <iostream>
#include <vector>
#include <cmath>
using std::cerr;using std::endl;
namespace opt_utilities
{
/**
\brief least-square statistic
\tparam Ty the return type of model
\tparam Tx the type of the self-var
\tparam Tp the type of model parameter
\tparam Ts the type of the statistic
\tparam Tstr the type of the string used
*/
template<typename Ty,typename Tx,typename Tp,typename Ts,typename Tstr>
class leastsq
:public statistic<Ty,Tx,Tp,Ts,Tstr>
{
private:
bool verb;
int n;
statistic<Ty,Tx,Tp,Ts,Tstr>* do_clone()const
{
// return const_cast<statistic<Ty,Tx,Tp>*>(this);
return new leastsq<Ty,Tx,Tp,Ts,Tstr>(*this);
}
const char* do_get_type_name()const
{
return "least square statistic";
}
public:
void verbose(bool v)
{
verb=v;
}
public:
leastsq()
:verb(false)
{}
Ts do_eval(const Tp& p)
{
Ts result(0);
for(int i=(this->get_data_set()).size()-1;i>=0;--i)
{
Ty chi=(this->get_data_set().get_data(i).get_y()-eval_model(this->get_data_set().get_data(i).get_x(),p));
result+=chi*chi;
}
if(verb)
{
n++;
if(n%10==0)
{
cerr<<result<<"\t";
for(size_t i=0;i<get_size(p);++i)
{
cerr<<get_element(p,i)<<",";
}
cerr<<endl;
}
}
return result;
}
};
}
#endif
//EOF
|