aboutsummaryrefslogtreecommitdiffstats
path: root/vmodels/lin1d.hpp
blob: 701e8e32ecc0fd4fe4da7e0e8a636f701585c188 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
/**
   \file lin1d.hpp
   \brief linear 
   \author Junhua Gu
 */


#ifndef VLINEAR_MODEL_H_
#define VLINEAR_MODEL_H_
#define OPT_HEADER
#include <core/fitter.hpp>
#include <misc/optvec.hpp>
#include <core/pre_estimater.hpp>
#include <cmath>

namespace opt_utilities
{
  template <typename T>
  class lin1d
    :public model<optvec<T>,optvec<T>,optvec<T>,std::string>
    ,public pre_estimatable<optvec<T>,optvec<T>,optvec<T>,std::string>
  {
    typedef optvec<T> Tv;
  private:
    lin1d<T>* do_clone()const
    {
      return new lin1d<T>(*this);
    }

    const char* do_get_type_name()const
    {
      return "1d linear model";
    }
  public:
    lin1d()
    {
      this->push_param_info(param_info<Tv>("k",1));
      this->push_param_info(param_info<Tv>("b",0));
    }

  public:
    Tv do_eval(const Tv& x,const Tv& param)
    {
      Tv result(x.size());
      
      //return x*get_element(param,0)+get_element(param,1);
      for(size_t i=0;i!=x.size();++i)
	{
	  result[i]=param[0]*x[i]+param[1];
	}
      return result;
    }

  private:
    std::string do_get_information()const
    {
#include <model_doc/lin1d.info>
    }
  };
}



#endif
//EOF