aboutsummaryrefslogtreecommitdiffstats
path: root/python/radialPSD2d.py
diff options
context:
space:
mode:
Diffstat (limited to 'python/radialPSD2d.py')
-rwxr-xr-xpython/radialPSD2d.py273
1 files changed, 0 insertions, 273 deletions
diff --git a/python/radialPSD2d.py b/python/radialPSD2d.py
deleted file mode 100755
index 2b5c4d8..0000000
--- a/python/radialPSD2d.py
+++ /dev/null
@@ -1,273 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-#
-# Credit:
-# [1] Radially averaged power spectrum of 2D real-valued matrix
-# Evan Ruzanski
-# 'raPsd2d.m'
-# https://www.mathworks.com/matlabcentral/fileexchange/23636-radially-averaged-power-spectrum-of-2d-real-valued-matrix
-#
-# Aaron LI <aaronly.me@gmail.com>
-# Created: 2015-04-22
-# Updated: 2016-04-26
-#
-# Changelog:
-# 2016-04-26:
-# * Adjust plot function
-# * Update normalize argument; Add pixel argument
-# 2016-04-25:
-# * Update plot function
-# * Add command line scripting support
-# * Encapsulate the functions within class 'PSD'
-# * Update docs/comments
-#
-
-"""
-Compute the radially averaged power spectral density (i.e., power spectrum).
-"""
-
-__version__ = "0.3.1"
-__date__ = "2016-04-25"
-
-
-import sys
-import os
-import argparse
-
-import numpy as np
-from scipy import fftpack
-from astropy.io import fits
-
-import matplotlib.pyplot as plt
-from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
-from matplotlib.figure import Figure
-
-plt.style.use("ggplot")
-
-
-class PSD:
- """
- Computes the 2D power spectral density and the radially averaged power
- spectral density (i.e., 1D power spectrum).
- """
- # 2D image data
- img = None
- # value and unit of 1 pixel for the input image
- pixel = (None, None)
- # whether to normalize the power spectral density by image size
- normalize = True
- # 2D power spectral density
- psd2d = None
- # 1D (radially averaged) power spectral density
- freqs = None
- psd1d = None
- psd1d_err = None
-
- def __init__(self, img, pixel=(1.0, "pixel"), normalize=True):
- self.img = img.astype(np.float)
- self.pixel = pixel
- self.normalize = normalize
-
- def calc_psd2d(self):
- """
- Computes the 2D power spectral density of the given image.
- Note that the low frequency components are shifted to the center
- of the FFT'ed image.
-
- Return:
- 2D power spectral density, which is dimensionless if normalized,
- otherwise has unit ${pixel_unit}^2.
- """
- rows, cols = self.img.shape
- ## Compute the power spectral density (i.e., power spectrum)
- imgf = fftpack.fftshift(fftpack.fft2(self.img))
- if self.normalize:
- norm = rows * cols * self.pixel[0]**2
- else:
- norm = 1.0 # Do not normalize
- self.psd2d = (np.abs(imgf) / norm) ** 2
- return self.psd2d
-
- def calc_radial_psd1d(self, k_geometric=True, k_step=1.2):
- """
- Computes the radially averaged power spectral density from the
- provided 2D power spectral density.
-
- XXX/TODO:
-
- Arguments:
- * k_geometric: whether the k (i.e., frequency) varies as
- geometric sequences (i.e., k, k*k_step, ...),
- otherwise, k varies as (k, k+k_step, ...)
- * k_step: the step ratio or step length for k
-
- Return:
- (freqs, radial_psd, radial_psd_err)
- freqs: spatial freqencies (unit: ${pixel_unit}^(-1))
- if k_geometric=True, frequencies are taken as the
- geometric means.
- radial_psd: radially averaged power spectral density for each
- frequency
- radial_psd_err: standard deviations of each radial_psd
- """
- psd2d = self.psd2d.copy()
- rows, cols = psd2d.shape
- ## Adjust the PSD array size
- dim_diff = np.abs(rows - cols)
- dim_max = max(rows, cols)
- # Pad the 2D PSD array to be sqaure
- if rows > cols:
- # pad columns
- if np.mod(dim_diff, 2) == 0:
- cols_left = np.zeros((rows, dim_diff/2))
- cols_left[:] = np.nan
- cols_right = np.zeros((rows, dim_diff/2))
- cols_right[:] = np.nan
- psd2d = np.hstack((cols_left, psd2d, cols_right))
- else:
- cols_left = np.zeros((rows, np.floor(dim_diff/2)))
- cols_left[:] = np.nan
- cols_right = np.zeros((rows, np.floor(dim_diff/2)+1))
- cols_right[:] = np.nan
- psd2d = np.hstack((cols_left, psd2d, cols_right))
- elif rows < cols:
- # pad rows
- if np.mod(dim_diff, 2) == 0:
- rows_top = np.zeros((dim_diff/2, cols))
- rows_top[:] = np.nan
- rows_bottom = np.zeros((dim_diff/2, cols))
- rows_bottom[:] = np.nan
- psd2d = np.vstack((rows_top, psd2d, rows_bottom))
- else:
- rows_top = np.zeros((np.floor(dim_diff/2), cols))
- rows_top[:] = np.nan
- rows_bottom = np.zeros((np.floor(dim_diff/2)+1, cols))
- rows_bottom[:] = np.nan
- psd2d = np.vstack((rows_top, psd2d, rows_bottom))
- ## Compute radially average power spectrum
- px = np.arange(-dim_max/2, dim_max/2)
- x, y = np.meshgrid(px, px)
- rho, phi = self.cart2pol(x, y)
- rho = np.around(rho).astype(np.int)
- dim_half = int(np.floor(dim_max/2) + 1)
- radial_psd = np.zeros(dim_half)
- radial_psd_err = np.zeros(dim_half) # standard error
- for r in range(dim_half):
- # Get the indices of the elements satisfying rho[i,j]==r
- ii, jj = (rho == r).nonzero()
- # Calculate the mean value at a given radii
- data = psd2d[ii, jj]
- radial_psd[r] = np.nanmean(data)
- radial_psd_err[r] = np.nanstd(data)
- # Calculate frequencies
- f = fftpack.fftfreq(dim_max, d=1) # sample spacing: set to 1 pixel
- freqs = np.abs(f[:dim_half])
- #
- self.freqs = freqs
- self.psd1d = radial_psd
- self.psd1d_err = radial_psd_err
- return (freqs, radial_psd, radial_psd_err)
-
- @staticmethod
- def cart2pol(x, y):
- """
- Convert Cartesian coordinates to polar coordinates.
- """
- rho = np.sqrt(x**2 + y**2)
- phi = np.arctan2(y, x)
- return (rho, phi)
-
- @staticmethod
- def pol2cart(rho, phi):
- """
- Convert polar coordinates to Cartesian coordinates.
- """
- x = rho * np.cos(phi)
- y = rho * np.sin(phi)
- return (x, y)
-
- def plot(self, ax=None, fig=None):
- """
- Make a plot of the radial (1D) PSD with matplotlib.
- """
- if ax is None:
- fig, ax = plt.subplots(1, 1)
- #
- xmin = self.freqs[1] / 1.2 # ignore the first 0
- xmax = self.freqs[-1]
- ymin = np.nanmin(self.psd1d) / 10.0
- ymax = np.nanmax(self.psd1d + self.psd1d_err)
- #
- eb = ax.errorbar(self.freqs, self.psd1d, yerr=self.psd1d_err,
- fmt="none")
- ax.plot(self.freqs, self.psd1d, "ko")
- ax.set_xscale("log")
- ax.set_yscale("log")
- ax.set_xlim(xmin, xmax)
- ax.set_ylim(ymin, ymax)
- ax.set_title("Radially Averaged Power Spectral Density")
- ax.set_xlabel(r"k (%s$^{-1}$)" % self.pixel[1])
- if self.normalize:
- ax.set_ylabel("Power")
- else:
- ax.set_ylabel(r"Power (%s$^2$)" % self.pixel[1])
- fig.tight_layout()
- return (fig, ax)
-
-
-def main():
- parser = argparse.ArgumentParser(
- description="Compute the radially averaged power spectral density",
- epilog="Version: %s (%s)" % (__version__, __date__))
- parser.add_argument("-V", "--version", action="version",
- version="%(prog)s " + "%s (%s)" % (__version__, __date__))
- parser.add_argument("-i", "--infile", dest="infile",
- required=True, help="input image")
- parser.add_argument("-o", "--outfile", dest="outfile",
- required=True, help="output file to store the PSD data")
- parser.add_argument("-p", "--png", dest="png",
- help="plot the PSD and save to the given PNG file")
- parser.add_argument("-v", "--verbose", dest="verbose",
- action="store_true", help="show verbose information")
- parser.add_argument("-C", "--clobber", dest="clobber",
- action="store_true",
- help="overwrite the output files if already exist")
- args = parser.parse_args()
-
- # Check output files whether already exists
- if (not args.clobber) and os.path.exists(args.outfile):
- raise ValueError("outfile '%s' already exists" % args.outfile)
- if (not args.clobber) and os.path.exists(args.png):
- raise ValueError("output png '%s' already exists" % args.png)
-
- # Load image data
- if args.verbose:
- print("Loading input image ...", file=sys.stderr)
- with fits.open(args.infile) as ffile:
- img = ffile[0].data
- psd = PSD(img, normalize=True)
-
- # Calculate the power spectral density
- if args.verbose:
- print("Calculate 2D power spectral density ...", file=sys.stderr)
- psd.calc_psd2d()
- if args.verbose:
- print("Calculate radially averaged (1D) power spectral density ...",
- file=sys.stderr)
- freqs, psd1d, psd1d_err = psd.calc_radial_psd1d()
-
- # Write out PSD results
- psd_data = np.column_stack((freqs, psd1d, psd1d_err))
- np.savetxt(args.outfile, psd_data, header="freqs psd1d psd1d_err")
-
- # Make and save a plot
- fig = Figure(figsize=(10, 8))
- canvas = FigureCanvas(fig)
- ax = fig.add_subplot(111)
- psd.plot(ax=ax, fig=fig)
- fig.savefig(args.png, format="png", dpi=150)
-
-
-if __name__ == "__main__":
- main()
-