summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAaron LI <aaronly.me@outlook.com>2016-07-04 15:18:34 +0800
committerAaron LI <aaronly.me@outlook.com>2016-07-04 15:18:34 +0800
commit718963dfb658fe2dd333d2df88a809c9d3d9383e (patch)
treebd9285307dc1343d06fd83dc7272bc7afda0164e
parent10f0d7cfdfc55c1a3a7c1e9664c38efbd776b895 (diff)
downloadcexcess-718963dfb658fe2dd333d2df88a809c9d3d9383e.tar.bz2
fit_sbp.py: remove "FitModelSBetaNorm" and "FitModelDBetaNorm"
-rwxr-xr-xfit_sbp.py140
1 files changed, 6 insertions, 134 deletions
diff --git a/fit_sbp.py b/fit_sbp.py
index ed803a9..6d2d330 100755
--- a/fit_sbp.py
+++ b/fit_sbp.py
@@ -3,9 +3,12 @@
#
# Aaron LI
# Created: 2016-03-13
-# Updated: 2016-05-06
+# Updated: 2016-07-04
#
# Change logs:
+# 2016-07-04:
+# * Remove unused classes "FitModelSBetaNorm" and "FitModelDBetaNorm"
+# * Fix minor typo
# 2016-05-06:
# * Get rid of the argument `config_model` of function `make_sbpfit()`
# * Add property `long_name` to models
@@ -332,137 +335,6 @@ class FitModelDBeta(FitModel):
verticalalignment="top")
-class FitModelSBetaNorm(FitModel):
- """
- The single-beta model to be fitted.
- Single-beta model, with a constant background.
- Normalized the `s0' and `bkg' parameters by take the logarithm.
- """
- params = lmfit.Parameters()
- params.add_many( # (name, value, vary, min, max, expr)
- ("log10_s0", -8.0, True, -12.0, -6.0, None),
- ("rc", 30.0, True, 1.0, 1.0e4, None),
- ("beta", 0.7, True, 0.3, 1.1, None),
- ("log10_bkg", -9.0, True, -12.0, -7.0, None))
-
- @staticmethod
- def sbeta(r, params):
- parvals = params.valuesdict()
- s0 = 10 ** parvals["log10_s0"]
- rc = parvals["rc"]
- beta = parvals["beta"]
- bkg = 10 ** parvals["log10_bkg"]
- return s0 * np.power((1 + (r/rc)**2), (0.5 - 3*beta)) + bkg
-
- def __init__(self):
- super().__init__(name="sbeta_norm",
- long_name="Single-beta normalized",
- func=self.sbeta, params=self.params)
-
- def plot(self, params, xdata, ax):
- """
- Plot the fitted model, as well as the fitted parameters.
- """
- super().plot(params, xdata, ax)
- ydata = self.sbeta(xdata, params)
- # fitted paramters
- ax.vlines(x=params["rc"].value, ymin=min(ydata), ymax=max(ydata),
- linestyles="dashed")
- ax.hlines(y=(10 ** params["bkg"].value), xmin=min(xdata),
- xmax=max(xdata), linestyles="dashed")
- ax.text(x=params["rc"].value, y=min(ydata),
- s="beta: %.2f\nrc: %.2f" % (params["beta"].value,
- params["rc"].value))
- ax.text(x=min(xdata), y=min(ydata),
- s="bkg: %.3e" % (10 ** params["bkg"].value),
- verticalalignment="top")
-
-
-class FitModelDBetaNorm(FitModel):
- """
- The double-beta model to be fitted.
- Double-beta model, with a constant background.
- Normalized the `s01', `s02' and `bkg' parameters by take the logarithm.
-
- NOTE:
- the first beta component (s01, rc1, beta1) describes the main and
- outer SBP; while the second beta component (s02, rc2, beta2) accounts
- for the central brightness excess.
- """
- params = lmfit.Parameters()
- params.add("log10_s01", value=-8.0, min=-12.0, max=-6.0)
- params.add("rc1", value=50.0, min=10.0, max=1.0e4)
- params.add("beta1", value=0.7, min=0.3, max=1.1)
- # params.add("df_s0", value=1.0e-8, min=0.0, max=1.0e-6)
- # params.add("s02", expr="s01 + df_s0")
- params.add("log10_s02", value=-8.0, min=-12.0, max=-6.0)
- # params.add("df_rc", value=30.0, min=0.0, max=1.0e4)
- # params.add("rc2", expr="rc1 - df_rc")
- params.add("rc2", value=20.0, min=1.0, max=5.0e2)
- params.add("beta2", value=0.7, min=0.3, max=1.1)
- params.add("log10_bkg", value=-9.0, min=-12.0, max=-7.0)
-
- @staticmethod
- def beta1(r, params):
- """
- This beta component describes the main/outer part of the SBP.
- """
- parvals = params.valuesdict()
- s01 = 10 ** parvals["log10_s01"]
- rc1 = parvals["rc1"]
- beta1 = parvals["beta1"]
- bkg = 10 ** parvals["log10_bkg"]
- return s01 * np.power((1 + (r/rc1)**2), (0.5 - 3*beta1)) + bkg
-
- @staticmethod
- def beta2(r, params):
- """
- This beta component describes the central/excess part of the SBP.
- """
- parvals = params.valuesdict()
- s02 = 10 ** parvals["log10_s02"]
- rc2 = parvals["rc2"]
- beta2 = parvals["beta2"]
- return s02 * np.power((1 + (r/rc2)**2), (0.5 - 3*beta2))
-
- @classmethod
- def dbeta(self, r, params):
- return self.beta1(r, params) + self.beta2(r, params)
-
- def __init__(self):
- super().__init__(name="dbeta_norm",
- long_name="Double-beta normalized",
- func=self.dbeta, params=self.params)
-
- def plot(self, params, xdata, ax):
- """
- Plot the fitted model, and each beta component,
- as well as the fitted parameters.
- """
- super().plot(params, xdata, ax)
- beta1_ydata = self.beta1(xdata, params)
- beta2_ydata = self.beta2(xdata, params)
- ax.plot(xdata, beta1_ydata, 'b-.')
- ax.plot(xdata, beta2_ydata, 'b-.')
- # fitted paramters
- ydata = beta1_ydata + beta2_ydata
- ax.vlines(x=params["log10_rc1"].value, ymin=min(ydata),
- ymax=max(ydata), linestyles="dashed")
- ax.vlines(x=params["rc2"].value, ymin=min(ydata), ymax=max(ydata),
- linestyles="dashed")
- ax.hlines(y=(10 ** params["bkg"].value), xmin=min(xdata),
- xmax=max(xdata), linestyles="dashed")
- ax.text(x=params["rc1"].value, y=min(ydata),
- s="beta1: %.2f\nrc1: %.2f" % (params["beta1"].value,
- params["rc1"].value))
- ax.text(x=params["rc2"].value, y=min(ydata),
- s="beta2: %.2f\nrc2: %.2f" % (params["beta2"].value,
- params["rc2"].value))
- ax.text(x=min(xdata), y=min(ydata),
- s="bkg: %.3e" % (10 ** params["bkg"].value),
- verticalalignment="top")
-
-
class SbpFit:
"""
Class to handle the SBP fitting with single-/double-beta model.
@@ -703,8 +575,8 @@ class SbpFit:
self.results.update([
("nfev", fitted.nfev),
("ndata", fitted.ndata),
- ("nvarys", fitted.nvarys), # number of varible paramters
- ("nfree", fitted.nfree), # degree of freem
+ ("nvarys", fitted.nvarys), # number of variable parameters
+ ("nfree", fitted.nfree), # degree of freedom
("chisqr", fitted.chisqr),
("redchi", fitted.redchi),
("aic", fitted.aic),