summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAaron LI <aaronly.me@outlook.com>2016-06-15 17:24:45 +0800
committerAaron LI <aaronly.me@outlook.com>2016-06-15 17:24:45 +0800
commitee9be2847877b543c287ddbed7cfdc2d13bdfc32 (patch)
treef906f564bd5c36557a5405a7f2a13c0a850acb1e
parent7dc84ad3586e6c8fe27dc9482de0331ca066288e (diff)
downloadcexcess-ee9be2847877b543c287ddbed7cfdc2d13bdfc32.tar.bz2
deproject_sbp.py: implemented basic SBP extrapolation
-rwxr-xr-xdeproject_sbp.py289
1 files changed, 245 insertions, 44 deletions
diff --git a/deproject_sbp.py b/deproject_sbp.py
index 94193e0..d73799f 100755
--- a/deproject_sbp.py
+++ b/deproject_sbp.py
@@ -15,9 +15,14 @@
#
# Weitian LI
# Created: 2016-06-10
-# Updated: 2016-06-13
+# Updated: 2016-06-15
#
# Change logs:
+# 2016-06-15:
+# * Add class 'SBP' for SBP background subtraction and extrapolation
+# 2016-06-14:
+# * Add class 'PLCModel' based on 'FitModel'
+# * Split class 'FitModel' from 'ABModel'
# 2016-06-13:
# * Add class 'ABModel' to support data scaling
# * Implement primitive SBP deprojection approach for class 'DeprojectSBP'
@@ -167,23 +172,12 @@ def testProjection():
print("All tests PASSED!")
-class ABModel:
+class FitModel:
"""
- AB model is a modified version of the beta model, which can roughly
- fit both centrally peaked and cored models, e.g., central excess emission.
-
- References:
- [1] Pratt & Arnaud, 2002, A&A, 394, 375; eq.(2)
- [2] ref.[1], eq.(10)
+ Base/Meta class for model fitting, with data and parameters scaling.
"""
- name = "AB model"
- # model parameters
+ name = ""
params = lmfit.Parameters()
- params.add_many( # (name, value, vary, min, max, expr)
- ("A", 1.0e-9, True, 0.0, 1.0e-5, None),
- ("alpha", 0.7, True, 0.1, 1.1, None),
- ("rc", 30.0, True, 1.0, 1.0e4, None),
- ("beta", 0.7, True, 0.3, 1.1, None))
# optimization method
fit_method = "lbfgsb"
# whether the 'ydata' and 'yerr' to be scaled in order to reduce
@@ -197,9 +191,15 @@ class ABModel:
self.load_params(params)
self.scale = scale
+ @staticmethod
+ def model(x, params):
+ pass
+
+ def f(self, x):
+ return self.model(x, self.params) * self.scale_factor
+
def load_data(self, xdata, ydata=None, xerr=None, yerr=None,
update_params=False):
- self.reset()
if xdata.ndim == 2 and xdata.shape[1] == 4:
# 4-column data
self.xdata = xdata[:, 0].copy()
@@ -214,6 +214,10 @@ class ABModel:
self.scale_data(update_params=update_params)
def scale_data(self, update_params=False):
+ """
+ Scale the ydata and yerr to reduce their dynamical ranges,
+ for a more stable model fitting.
+ """
if self.scale:
y_min = np.min(self.ydata)
y_max = np.max(self.ydata)
@@ -221,14 +225,13 @@ class ABModel:
self.ydata /= self.scale_factor
self.yerr /= self.scale_factor
if update_params:
- A_min = 1.0
- A_max = np.max(self.ydata)
- self.set_param("A", value=(A_min+A_max)*0.5,
- min=A_min, max=A_max)
+ self.scale_params()
- def reset(self):
- self.fitter = None
- self.fitted = None
+ def scale_params(self):
+ """
+ Scale the paramters' min/max values accordingly.
+ """
+ pass
def f_residual(self, params):
if self.yerr is None:
@@ -243,19 +246,6 @@ class ABModel:
self.fitted = self.fitter.minimize(method=method)
self.load_params(self.fitted.params)
- @staticmethod
- def model(x, params):
- parvals = params.valuesdict()
- A = parvals["A"]
- alpha = parvals["alpha"]
- rc = parvals["rc"]
- beta = parvals["beta"]
- return (A * np.power(x/rc, -alpha) *
- np.power((1 + (x/rc)**2), -1.5*beta + 0.5*alpha))
-
- def f(self, x):
- return self.model(x, self.params) * self.scale_factor
-
def get_param(self, name=None):
"""
Return the requested 'Parameter' object or the whole
@@ -295,11 +285,96 @@ class ABModel:
self.params = p
+class ABModel(FitModel):
+ """
+ AB model is a modified version of the beta model, which can roughly
+ fit both centrally peaked and cored models, e.g., central excess emission.
+
+ References:
+ [1] Pratt & Arnaud, 2002, A&A, 394, 375; eq.(2)
+ [2] ref.[1], eq.(10)
+ """
+ name = "AB model"
+ # model parameters
+ params = lmfit.Parameters()
+ params.add_many( # (name, value, vary, min, max, expr)
+ ("A", 1.0e-9, True, 0.0, 1.0e-5, None),
+ ("alpha", 0.7, True, 0.1, 1.1, None),
+ ("rc", 30.0, True, 1.0, 1.0e4, None),
+ ("beta", 0.7, True, 0.3, 1.1, None))
+
+ def scale_params(self):
+ A_min = 1.0
+ A_max = np.max(self.ydata)
+ self.set_param("A", value=(A_min+A_max)*0.5,
+ min=A_min, max=A_max)
+
+ @staticmethod
+ def model(x, params):
+ parvals = params.valuesdict()
+ A = parvals["A"]
+ alpha = parvals["alpha"]
+ rc = parvals["rc"]
+ beta = parvals["beta"]
+ return (A * np.power(x/rc, -alpha) *
+ np.power((1 + (x/rc)**2), -1.5*beta + 0.5*alpha))
+
+
+class PLCModel(FitModel):
+ """
+ PLC model consists of a powerlaw and an constant, that is used
+ to fit/approximate the outer SBP.
+ Therefore, the fitted constant is used to subtract the uniform
+ background from the SBP, and the fitted powerlaw index is used
+ to extrapolate the SBP in order to mitigate the deprojection
+ errors due to FoV limit.
+
+ NOTE:
+ I think the uniform background (i.e., by fitting the whole or
+ core-excluded SBP) should be subtracted from the SBP first, then
+ adopt this PLCModel to fit the outer part of SBP, with the 'bkg'
+ parameter fixed at zero.
+ """
+ name = "PLC model"
+ # model parameters
+ params = lmfit.Parameters()
+ params.add_many( # (name, value, vary, min, max, expr)
+ ("A", 1.0e-9, True, 0.0, 1.0e-5, None),
+ ("rmin", 30.0, False, 1.0, 1.0e4, None),
+ ("alpha", 1.6, True, 0.4, 2.8, None),
+ ("bkg", 0.0, False, 0.0, 1.0e-5, None))
+
+ def load_data(self, xdata, ydata=None, xerr=None, yerr=None,
+ update_params=False):
+ super().load_data(xdata=xdata, ydata=ydata, xerr=xerr, yerr=yerr,
+ update_params=update_params)
+ self.set_param("rmin", value=np.min(xdata), vary=False)
+
+ def scale_params(self):
+ ymin = np.min(self.ydata)
+ ymax = np.max(self.ydata)
+ self.set_param("A", value=ymax, min=ymax/10.0, max=ymax*10.0)
+ self.set_param("bkg", value=ymin, min=0.0, max=ymin)
+
+ @staticmethod
+ def model(x, params):
+ parvals = params.valuesdict()
+ A = parvals["A"]
+ rmin = parvals["rmin"]
+ alpha = parvals["alpha"]
+ bkg = parvals["bkg"]
+ return A * np.power(x/rmin, -alpha) + bkg
+
+
class DeprojectSBP:
"""
Deproject the observed SBP to derive the 3D emission measure (EM)
profile, using a regularization technique.
+ TODO:
+ * add 'mask' support
+ * implement 'optimize_lbd()'
+
References: ref.[1]
"""
# input SBP data: [r, r_err, s, s_err]
@@ -307,6 +382,8 @@ class DeprojectSBP:
r_err = None
s = None
s_err = None
+ # mask used to exclude specified data point for cross-validation
+ mask = None
# 'Projection' instance for this SBP
projector = None
# 'ABModel' instance to fit the deprojected EM profile for rescaling data
@@ -318,8 +395,6 @@ class DeprojectSBP:
opt_method = "Powell"
# scipy optimize results from 'self.deproject()'
deproject_res = None
- ####
- debug_xlist = []
def __init__(self, r, r_err=None, s=None, s_err=None,
lbd=1.0, opt_method="Powell"):
@@ -328,7 +403,6 @@ class DeprojectSBP:
self.abmodel = ABModel(scale=True)
self.lbd = lbd
self.opt_method = opt_method
- self.debug_xlist = []
def load_data(self, r, r_err=None, s=None, s_err=None):
if r.ndim == 2 and r.shape[1] == 4:
@@ -342,6 +416,7 @@ class DeprojectSBP:
self.r_err = np.array(r_err)
self.s = np.array(s)
self.s_err = np.array(s_err)
+ self.mask = np.ones(self.r.shape, dtype=np.bool)
def deproject(self, lbd=None, opt_method=None):
"""
@@ -364,8 +439,6 @@ class DeprojectSBP:
em0 = self.projector.deproject(self.s)
# scale the EM data to reduce the dynamical range
em0_scaled = self.scale_data(em0, update_params=True)
- # DEBUG
- self.debug_xlist.append(em0_scaled)
res = scipy.optimize.minimize(fun=fobj, x0=em0_scaled,
method=opt_method,
callback=callback,
@@ -381,7 +454,6 @@ class DeprojectSBP:
If the errors/uncertainties is not specified, it is assumed
to have the same relative errors as the observed SBP.
"""
- self.debug_xlist.append(x)
if xerr is None:
x_err = x * self.s_err / self.s
self.abmodel.load_data(xdata=self.r, xerr=self.r_err,
@@ -452,13 +524,142 @@ class DeprojectSBP:
"""
Function to calculate the value of regularization constraint.
- References: ref.[1], eq.(3)
+ References:
+ [1] ref.[1], eq.(3)
+ [2] ref.[3], eq.(18)
"""
if not scaled:
x = self.scale_data(x)
- constraint = np.sum((x[:-1] + x[1:]) ** 2)
+ # constraint = np.sum((x[:-1] + x[1:]) ** 2)
+ constraint = np.sum((x[:-2] - 2*x[1:-1] + x[2:]) ** 2)
return constraint
+ def optimize_lbd(self, lbd0=None):
+ """
+ Find the optimal smoothing parameter 'lbd' by using the
+ cross-validation method.
+
+ References: ref.[3], eq.(23)
+ """
+ if lbd0 is not None:
+ self.lbd = lbd0
+ pass
+
+ def predict_obs(self):
+ """
+ Predict the observation data (i.e., surface brightness) by
+ projecting the interpolated solved EM profile.
+ """
+ pass
+
+
+class SBP:
+ """
+ X-ray surface brightness profile class.
+
+ This class deals with SBP background subtraction and SBP extrapolation.
+ """
+ # input SBP data: [r, r_err, s, s_err]
+ r = None
+ r_err = None
+ s = None
+ s_err = None
+ # uniform background been subtracted
+ bkg = None
+ # cut/minimal radius from which the SBP is fitted to the PLCModel
+ rcut = None
+ # PLCModel instance used to extrapolate the SBP
+ plcmodel = None
+
+ def __init__(self, r, r_err=None, s=None, s_err=None, rcut=None):
+ self.load_data(r=r, r_err=r_err, s=s, s_err=s_err, rcut=rcut)
+ self.plcmodel = PLCModel(scale=True)
+
+ def load_data(self, r, r_err=None, s=None, s_err=None, rcut=None):
+ if r.ndim == 2 and r.shape[1] == 4:
+ # 4-column data
+ self.r = r[:, 0].copy()
+ self.r_err = r[:, 1].copy()
+ self.s = r[:, 2].copy()
+ self.s_err = r[:, 3].copy()
+ else:
+ self.r = np.array(r)
+ self.r_err = np.array(r_err)
+ self.s = np.array(s)
+ self.s_err = np.array(s_err)
+ self.rcut = rcut
+
+ def subtract_bkg(self, bkg):
+ """
+ Subtract the uniform background from the brightness.
+
+ The value of background can be acquired by fitting the whole
+ or core-exclude SBP with model consisting of a plain beta model
+ and a constant.
+ The "AB model" maybe also applicable.
+ """
+ self.bkg = bkg
+ self.s -= bkg
+ self.bkg_subtracted = True
+
+ def extrapolate(self, rcut=None):
+ """
+ Extrapolate the SBP by assuming that the outer SBP follows the
+ following relation:
+ S_X = A * r^{-alpha},
+ which can be determined by model fitting.
+
+ The SBP is extrapolated to the region where the brightness is
+ lower than the current observed minimal brightness by one order
+ of magnitude, and the extrapolated SBP bins have the same width
+ and relative errors as the last SBP bin observed.
+
+ Note that the uniform background should be subtracted first.
+
+ Return:
+ * self.r_extrapolated
+ * self.r_err_extrapolated
+ * self.s_extrapolated
+ * self.s_err_extrapolated
+ * self.mask_extrapolated
+ """
+ if rcut is not None:
+ self.rcut = rcut
+ self.mask = self.r >= self.rcut
+ self.plcmodel.load_data(xdata=self.r[self.mask],
+ ydata=self.s[self.mask],
+ xerr=self.r_err[self.mask],
+ yerr=self.s_err[self.mask],
+ update_params=True)
+ self.plcmodel.set_param("bkg", value=0.0, vary=False)
+ self.plcmodel.fit()
+ last_r_err = self.r_err[-1]
+ last_s = self.s[-1]
+ last_s_err = self.s_err[-1]
+ #
+ r_exp = self.r.tolist()
+ r_err_exp = self.r_err.tolist()
+ s_exp = self.s.tolist()
+ s_err_exp = self.s_err.tolist()
+ mask_exp = [False] * len(r_exp)
+ # do extrapolation
+ r_tmp = r_exp[-1] + 2*r_err_exp[-1]
+ s_tmp = self.plcmodel.f(r_tmp)
+ while s_tmp > last_s / 10.0:
+ r_exp.append(r_tmp)
+ r_err_exp.append(last_r_err)
+ s_exp.append(s_tmp)
+ s_err_exp.append(last_s_err)
+ mask_exp.append(True)
+ r_tmp = r_exp[-1] + 2*r_err_exp[-1]
+ s_tmp = self.plcmodel.f(r_tmp)
+ # convert to numpy array
+ self.r_extrapolated = np.array(r_exp)
+ self.r_err_extrapolated = np.array(r_err_exp)
+ self.s_extrapolated = np.array(s_exp)
+ self.s_err_extrapolated = np.array(s_err_exp)
+ self.mask_extrapolated = np.array(mask_exp)
+
def main():
parser = argparse.ArgumentParser(