diff options
author | Aaron LI <aaronly.me@outlook.com> | 2016-05-01 17:58:48 +0800 |
---|---|---|
committer | Aaron LI <aaronly.me@outlook.com> | 2016-05-01 17:58:48 +0800 |
commit | b42c0c7edce705919f21b5b42531c3f690bda8e7 (patch) | |
tree | 5bda9be393478dd3f0099f540b025083b775e0c9 /calc_pei.py | |
parent | 26251d7ca84267906e8810b186627427e790d18f (diff) | |
download | cexcess-b42c0c7edce705919f21b5b42531c3f690bda8e7.tar.bz2 |
calc_pei.py: add function to make a plot visualize the PEI calculation
Diffstat (limited to 'calc_pei.py')
-rwxr-xr-x | calc_pei.py | 89 |
1 files changed, 83 insertions, 6 deletions
diff --git a/calc_pei.py b/calc_pei.py index 19e71bb..37273d9 100755 --- a/calc_pei.py +++ b/calc_pei.py @@ -3,11 +3,10 @@ # # Aaron LI # Created: 2016-04-29 -# Updated: 2016-04-29 +# Updated: 2016-05-01 # # TODO: # * to calculate the PEI error -# * to save a plot with the rectangular and interpolation marked # """ @@ -20,11 +19,12 @@ Reference: Zhang, C., et al. 2016, ApJ """ -__version__ = "0.1.0" -__date__ = "2016-04-29" +__version__ = "0.2.1" +__date__ = "2016-05-01" import sys +import os import glob import argparse import json @@ -35,8 +35,16 @@ import scipy as sp import scipy.interpolate import scipy.integrate +import matplotlib.pyplot as plt +from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas +from matplotlib.figure import Figure +from matplotlib.path import Path +import matplotlib.patches as patches + from make_r500_regions import get_r500 +plt.style.use("ggplot") + def calc_pei(data, r500, interp_np=101): """ @@ -62,6 +70,7 @@ def calc_pei(data, r500, interp_np=101): x1 = np.log10(f1) x2 = np.log10(f2) # interpolate the power spectrum + # FIXME: include a pair surrounding data points for interpolation f_interp = sp.interpolate.interp1d(x, y, kind="cubic", assume_sorted=True) y1 = f_interp(x1) y2 = f_interp(x2) @@ -80,7 +89,63 @@ def calc_pei(data, r500, interp_np=101): "pei_value": pei_value, "pei_err": None, } - return results + data_interp_log10 = np.column_stack((x_interp, y_interp)) + return (results, data_interp_log10) + + +def plot_pei(data, data_interp_log10, ax=None, fig=None): + """ + Make a plot to visualize the PEI rectangular. + """ + if ax is None: + fig, ax = plt.subplots(1, 1) + freqs = data[:, 0] + psd1d = data[:, 1] + psd1d_err = data[:, 2] + # + mask = (freqs > 0.0) + xmin = np.min(freqs[mask]) / 1.2 + xmax = np.max(freqs[mask]) + ymin = np.min(psd1d[mask]) / 3.0 + ymax = np.max(psd1d[mask] + psd1d_err[mask]) * 1.2 + # + ax.plot(freqs, psd1d, color="black", linestyle="none", + marker="o", markersize=5, alpha=0.7) + ax.errorbar(freqs, psd1d, yerr=psd1d_err, fmt="none", + ecolor="blue", alpha=0.7) + ax.set_xscale("log") + ax.set_yscale("log") + ax.set_xlim(xmin, xmax) + ax.set_ylim(ymin, ymax) + ax.set_title("Radially Averaged Power Spectral Density") + ax.set_xlabel(r"k (pixel$^{-1}$)") + ax.set_ylabel("Power") + # plot the interpolated data points and the PEI rectangle + # credit: http://matplotlib.org/users/path_tutorial.html + x_interp = 10 ** data_interp_log10[:, 0] + y_interp = 10 ** data_interp_log10[:, 1] + ax.plot(x_interp, y_interp, linestyle="--", marker="D", markersize=2, + color="green", alpha=0.9) + vertices = [ + (x_interp[0], y_interp[-1]), # left, bottom + (x_interp[0], y_interp[0]), # left, top + (x_interp[-1], y_interp[0]), # right, top + (x_interp[-1], y_interp[-1]), # right, bottom + (x_interp[0], y_interp[-1]), # ignored + ] + codes = [ + Path.MOVETO, + Path.LINETO, + Path.LINETO, + Path.LINETO, + Path.CLOSEPOLY, + ] + path = Path(vertices, codes) + patch = patches.PathPatch(path, fill=False, color="green", linewidth=2, + alpha=0.9) + ax.add_patch(patch) + fig.tight_layout() + return (fig, ax) def main(): @@ -104,8 +169,13 @@ def main(): required=False, default=default_outfile, help="output json file to save the results " + \ "(default: %s)" % default_outfile) + parser.add_argument("-p", "--png", dest="png", default=None, + help="make PEI plot and save (default: same basename as outfile)") args = parser.parse_args() + if args.png is None: + args.png = os.path.splitext(args.outfile)[0] + ".png" + info_json = glob.glob(default_infojson)[0] if args.json: info_json = args.json @@ -120,7 +190,7 @@ def main(): kpc_per_pix = r500["kpc_per_pix"] psd_data = np.loadtxt(args.infile) - pei = calc_pei(psd_data, r500=r500_pix) + pei, data_interp_log10 = calc_pei(psd_data, r500=r500_pix) pei_data = OrderedDict([ ("name", name), @@ -137,6 +207,13 @@ def main(): print(pei_data_json) open(args.outfile, "w").write(pei_data_json+"\n") + # Make and save a plot + fig = Figure(figsize=(10, 8)) + canvas = FigureCanvas(fig) + ax = fig.add_subplot(111) + plot_pei(psd_data, data_interp_log10, ax=ax, fig=fig) + fig.savefig(args.png, format="png", dpi=150) + if __name__ == "__main__": main() |