diff options
-rwxr-xr-x | deproject_sbp.py | 247 |
1 files changed, 3 insertions, 244 deletions
diff --git a/deproject_sbp.py b/deproject_sbp.py index 8cbc6b5..3dd5a44 100755 --- a/deproject_sbp.py +++ b/deproject_sbp.py @@ -6,6 +6,8 @@ # # Change logs: # 2016-06-27: +# * Minor cleanups +# * Remove obsolete class "DeprojectSBP" # * Fit smoothing spline to SBP and cooling function profiles by # calling the R `mgcv::gam()`: "fit_spline()" and "eval_spline()" # * Update "plot()" to also plot the fitted smoothing spline @@ -161,8 +163,6 @@ from collections import OrderedDict import astropy.units as au import numpy as np import pandas as pd -import scipy.optimize as optimize -import scipy.interpolate as interpolate import matplotlib.pyplot as plt from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure @@ -173,247 +173,11 @@ from rpy2.robjects.packages import importr from astro_params import AstroParams, ChandraPixel from projection import Projection -from fitting_models import ABModel, PLCModel +from fitting_models import PLCModel plt.style.use("ggplot") -class DeprojectSBP: - """ - Deproject the observed SBP to derive the 3D emission measure (EM) - profile, using a regularization technique. - - TODO: - * add 'mask' support - * implement 'optimize_lbd()' - - References: ref.[1] - """ - # input SBP data: [r, r_err, s, s_err] - r = None - r_err = None - s = None - s_err = None - # mask used to exclude specified data point for cross-validation - mask = None - # 'Projection' instance for this SBP - projector = None - # 'ABModel' instance to fit the deprojected EM profile for rescaling data - abmodel = None - # smoothing parameter to balance between fidelity (chisq) and - # consistency with the applied regularization constraint. - lbd = 1.0 - # optimization method for scipy minimize - opt_method = "Powell" - # scipy optimize results from 'self.deproject()' - deproject_res = None - - def __init__(self, r, r_err=None, s=None, s_err=None, - lbd=1.0, opt_method="Powell"): - self.load_data(r=r, r_err=r_err, s=s, s_err=s_err) - self.projector = Projection(rout=self.r+self.r_err) - self.abmodel = ABModel(scale=True) - self.lbd = lbd - self.opt_method = opt_method - - def load_data(self, r, r_err=None, s=None, s_err=None): - if r.ndim == 2 and r.shape[1] == 4: - # 4-column data - self.r = r[:, 0].copy() - self.r_err = r[:, 1].copy() - self.s = r[:, 2].copy() - self.s_err = r[:, 3].copy() - else: - self.r = np.array(r) - self.r_err = np.array(r_err) - self.s = np.array(s) - self.s_err = np.array(s_err) - self.mask = np.ones(self.r.shape, dtype=np.bool) - - def deproject(self): - """ - Deproject the observed SBP through direct deprojection - calculation. - """ - self.em = self.projector.deproject(self.s) - return self.em - - def deproject_regularize(self, lbd=None, opt_method=None): - """ - Deproject the observed SBP to derive the 3D EM profile by - minimizing the objective function with regularization technique. - - XXX: - Since we just deproject the observed SBP without considering - the PSF convolution effect, the 3D EM profile can be just solved, - therefore, there is no need (also no way) to optimize the - smoothing parameter 'lambda'. - """ - def fobj(x): - return self.f_objective(x, scaled=True) - - def callback(x): - # NOTE: 'x' here is the scaled EM solution - x_unscaled = self.unscale_data(x) - self.update_abmodel(x_unscaled) - - if lbd is not None: - self.lbd = lbd - if opt_method is None: - opt_method = self.opt_method - # initial guess - em0 = self.projector.deproject(self.s) - # scale the EM data to reduce the dynamical range - em0_scaled = self.scale_data(em0, update_params=True) - res = optimize.minimize(fun=fobj, x0=em0_scaled, - method=opt_method, - callback=callback, - options={"disp": True}) - self.deproject_res = res - self.em = self.unscale_data(res.x) - return self.em - - def update_abmodel(self, x, xerr=None, update_params=False): - """ - Load the supplied data into self.abmodel, and perform fitting. - - If the errors/uncertainties is not specified, it is assumed - to have the same relative errors as the observed SBP. - """ - if xerr is None: - x_err = x * self.s_err / self.s - self.abmodel.load_data(xdata=self.r, xerr=self.r_err, - ydata=x, yerr=x_err, - update_params=update_params) - self.abmodel.fit() - - def scale_data(self, x, xerr=None, update_params=False): - """ - Scale the data (i.e., 3D EM profile) by dividing the fitted - AB model. - - If the errors/uncertainties is not specified, it is assumed - to have the same relative errors as the observed SBP. - """ - self.update_abmodel(x=x, xerr=xerr, update_params=update_params) - x_fitted = self.abmodel.f(self.r) - x_scaled = x / x_fitted - return x_scaled - - def unscale_data(self, x): - """ - Undo the data scaling by multiplying the same fitted model - previously used to scale the data. - """ - x_fitted = self.abmodel.f(self.r) - x_unscaled = x * x_fitted - return x_unscaled - - def f_objective(self, x, scaled=False): - """ - The objective function to be minimized, in order to derive the - best solution (i.e., deprojected SBP) for the observed SBP. - - This objective function is a combination of plain chi-squared - and a regularization constraint. - - 'lbd' is the parameter to balance the goodness-of-fit and the - regularization constraint. - - References: ref.[1], eq.(2) - """ - return (self.f_chisq(x, scaled=scaled) + - self.lbd * self.f_constraint(x, scaled=scaled)) - - def f_residual(self, x, scaled=False): - """ - Calculate the residuals of each data point for the solution. - - The current solution (i.e., 3D EM profile) is first projected - into the 2D SBP, then compared to the observed SBP. - """ - if scaled: - x = self.unscale_data(x) - x_2d = self.projector.project(x) - residuals = (x_2d - self.s) / self.s_err - return residuals - - def f_chisq(self, x, scaled=False): - """ - Function to calculate the chi-squared value of the current - solution with respect to the data. - """ - chisq = np.sum(self.f_residual(x, scaled=scaled) ** 2) - return chisq - - def f_constraint(self, x, scaled=False): - """ - Function to calculate the value of regularization constraint. - - References: - [1] ref.[1], eq.(3) - [2] ref.[3], eq.(18) - """ - if not scaled: - x = self.scale_data(x) - # constraint = np.sum((x[:-1] + x[1:]) ** 2) - constraint = np.sum((x[:-2] - 2*x[1:-1] + x[2:]) ** 2) - return constraint - - def optimize_lbd(self, lbd0=None): - """ - Find the optimal smoothing parameter 'lbd' by using the - cross-validation method. - - References: ref.[3], eq.(23) - """ - if lbd0 is not None: - self.lbd = lbd0 - pass - - def predict_obs(self): - """ - Predict the observation data (i.e., surface brightness) by - projecting the interpolated solved EM profile. - """ - pass - - def plot(self, ax=None, fig=None): - if ax is None: - fig, ax = plt.subplots(1, 1) - # SBP data points - eb = ax.errorbar(self.r, self.s, xerr=self.r_err, yerr=self.s_err, - fmt="none", elinewidth=2, capthick=2, - label="Brightness profile") - r_min = 1.0 - r_max = max(self.r + self.r_err) - s_min = min(self.s) / 1.2 - s_max = max(self.s + self.s_err) * 1.2 - ax.set_xlim(r_min, r_max) - ax.set_ylim(s_min, s_max) - ax.set_xscale("log") - ax.set_yscale("log") - ax.set_xlabel("Radius (%s)" % "pixel") - ax.set_ylabel(r"Surface Brightness (photons/cm$^2$/pixel$^2$/s)") - # deprojected EM profile - ax2 = ax.twinx() - line, = ax2.plot(self.r, self.em, color="black", - linestyle="solid", linewidth=2, - label="EM profile") - em_min = min(self.em) / 1.2 - em_max = max(self.em) * 1.2 - ax2.set_xlim(r_min, r_max) - ax2.set_ylim(em_min, em_max) - ax2.set_yscale(ax.get_yscale()) - ax2.set_ylabel(r"Deprojected Emission Measure (???)") - # legend - handles = [eb, line] - labels = [h.get_label() for h in handles] - ax.legend(handles=handles, labels=labels, loc=0) - fig.tight_layout() - return (fig, ax, ax2) - - class SBP: """ X-ray surface brightness profile class. @@ -622,9 +386,6 @@ class SBP: df.to_csv(outfile, header=True, index=False) -###################################################################### - - class BrightnessProfile: """ Calculate the electron number density and/or gas mass density profile @@ -929,8 +690,6 @@ def main(): sbp.plot(ax=ax, fig=fig) fig.savefig(config["sbpexp_image"], dpi=150) - # TODO: smooth the extrapolated SBP - print("SBP deprojection -> density profile ...") redshift = config.as_float("redshift") cf_data = np.loadtxt(config["coolfunc_profile"]) |