summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rwxr-xr-xciao_calc_bkg.py44
1 files changed, 24 insertions, 20 deletions
diff --git a/ciao_calc_bkg.py b/ciao_calc_bkg.py
index cf5fdb5..be1bbc0 100755
--- a/ciao_calc_bkg.py
+++ b/ciao_calc_bkg.py
@@ -42,7 +42,7 @@ def parse_erange(erange):
def calc_exp(expmap, regfile):
"""
Calculate the area of the background spectrum extraction region,
- and the mean exposure (used as the MEAN_SRC_EXPOSURE) of that region.
+ and the mean exposure (un-normalized w.r.t exposure time) of that region.
"""
tf = tempfile.NamedTemporaryFile()
cmd_args = [
@@ -96,9 +96,9 @@ def main():
parser = argparse.ArgumentParser(
description="Calculate the background surface brightness")
parser.add_argument("-b", "--orig-bkg", dest="orig_bkg", required=True,
- help="original/uncorrected background spectrum " +
- "(e.g., blanksky_lbkg.pi), from which to get the " +
- "original EXPOSURE and BACKSCAL, etc.")
+ help="original/uncorrected local background " +
+ "spectrum (e.g., lbkg.pi), from which to get the " +
+ "original/source EXPOSURE and BACKSCAL, etc.")
parser.add_argument("-B", "--corr-bkg", dest="corr_bkg", required=True,
help="corrected background spectrum for the " +
"Galactic and cosmic background radiations " +
@@ -121,27 +121,31 @@ def main():
corr_bkg_results = calc_spec_counts(args.corr_bkg, erange=(e_low, e_high))
exp_results = calc_exp(args.expmap, regfile=args.bkg_region)
- counts = corr_bkg_results["counts"]
- exposure = corr_bkg_results["exposure"]
- backscal = corr_bkg_results["backscal"]
+ corr_counts = corr_bkg_results["counts"]
+ corr_exposure = corr_bkg_results["exposure"]
+ corr_backscal = corr_bkg_results["backscal"]
+ orig_exposure = orig_bkg_results["exposure"]
orig_backscal = orig_bkg_results["backscal"]
+ area = exp_results["area"]
mean_exp = exp_results["mean_exp"]
- bkg_sb = counts / exposure / mean_exp / backscal * orig_backscal
+ bkg_sb = corr_counts / corr_exposure / (mean_exp / orig_exposure) \
+ / (area * corr_backscal / orig_backscal)
results = OrderedDict([
- ("energy_low", e_low),
- ("energy_high", e_high),
- ("channel_low", corr_bkg_results["channel_low"]),
- ("channel_high", corr_bkg_results["channel_high"]),
- ("counts", counts),
- ("exposure", exposure),
- ("backscal", backscal),
- ("total_exp", exp_results["total_exp"]),
+ ("energy_low", e_low),
+ ("energy_high", e_high),
+ ("channel_low", corr_bkg_results["channel_low"]),
+ ("channel_high", corr_bkg_results["channel_high"]),
+ ("counts", corr_counts),
+ ("exposure", orig_exposure),
+ ("exposure_bkg", corr_exposure),
+ ("backscal", corr_backscal),
+ ("total_exp", exp_results["total_exp"]),
("total_exp_err", exp_results["total_exp_err"]),
- ("area", exp_results["area"]),
- ("mean_exp", exp_results["mean_exp"]),
- ("mean_exp_err", exp_results["mean_exp_err"]),
- ("bkg_sb", bkg_sb),
+ ("area", exp_results["area"]),
+ ("mean_exp", exp_results["mean_exp"]),
+ ("mean_exp_err", exp_results["mean_exp_err"]),
+ ("bkg_sb", bkg_sb),
])
results_json = json.dumps(results, indent=2)
print(results_json)