diff options
Diffstat (limited to 'fg21sim/extragalactic/pointsources/radioquiet.py')
-rw-r--r-- | fg21sim/extragalactic/pointsources/radioquiet.py | 190 |
1 files changed, 0 insertions, 190 deletions
diff --git a/fg21sim/extragalactic/pointsources/radioquiet.py b/fg21sim/extragalactic/pointsources/radioquiet.py deleted file mode 100644 index 0fbb6b2..0000000 --- a/fg21sim/extragalactic/pointsources/radioquiet.py +++ /dev/null @@ -1,190 +0,0 @@ -# Copyright (c) 2016 Zhixian MA <zxma_sjtu@qq.com> -# MIT license - -import numpy as np -import healpy as hp - -from .base import BasePointSource -from ...utils import convert - - -class RadioQuiet(BasePointSource): - - def __init__(self, configs): - super().__init__(configs) - self._set_configs() - # Number density matrix - self.rho_mat = self.calc_number_density() - # Cumulative distribution of z and lumo - self.cdf_z, self.cdf_lumo = self.calc_cdf() - - def _set_configs(self): - """Load the configs and set the corresponding class attributes""" - super()._set_configs() - pscomp = "extragalactic/pointsources/radioquiet/" - # point sources amount - self.num_ps = self.configs.getn(pscomp+"numps") - # prefix - self.prefix = self.configs.getn(pscomp+"prefix") - # redshift bin - z_type = self.configs.getn(pscomp+"z_type") - if z_type == 'custom': - start = self.configs.getn(pscomp+"z_start") - stop = self.configs.getn(pscomp+"z_stop") - step = self.configs.getn(pscomp+"z_step") - self.zbin = np.arange(start, stop + step, step) - else: - self.zbin = np.arange(0.1, 10, 0.05) - # luminosity bin - lumo_type = self.configs.getn(pscomp+"lumo_type") - if lumo_type == 'custom': - start = self.configs.getn(pscomp+"lumo_start") - stop = self.configs.getn(pscomp+"lumo_stop") - step = self.configs.getn(pscomp+"lumo_step") - self.lumobin = np.arange(start, stop + step, step) - else: - self.lumobin = np.arange(18.7, 25.7, 0.1) # [W/Hz/sr] - - def calc_number_density(self): - """ - Calculate number density rho(lumo,z) of FRI - - References - ------------ - [1] Wilman et al., - "A semi-empirical simulation of the extragalactic radio continuum - sky for next generation radio telescopes", - 2008, MNRAS, 388, 1335-1348. - http://adsabs.harvard.edu/abs/2008MNRAS.388.1335W - - Returns - ------- - rho_mat: np.ndarray - Number density matris (joint-distribution of luminosity and - reshift). - """ - # Init - rho_mat = np.zeros((len(self.lumobin), len(self.zbin))) - # Parameters - # Refer to Willman's section 2.4 - alpha = 0.7 # spectral index - lumo_star = 10.0**21.3 # critical luminosity at 1400MHz - rho_l0 = 10.0**(-7) # normalization constant - z1 = 1.9 # cut-off redshift - k1 = -3.27 # index of space density revolution - # Calculation - for i, z in enumerate(self.zbin): - if z <= z1: - rho_mat[:, i] = ((rho_l0 * (10**self.lumobin / lumo_star) ** - (-alpha) * - np.exp(-10**self.lumobin / lumo_star)) * - (1 + z)**k1) - else: - rho_mat[:, i] = ((rho_l0 * (10**self.lumobin / lumo_star) ** - (-alpha) * - np.exp(-10**self.lumobin / lumo_star)) * - (1 + z1)**k1) - return rho_mat - - def draw_single_ps(self, freq): - """ - Designed to draw the radio quiet AGN - - Parameters - ---------- - ImgMat: np.ndarray - Two dimensional matrix, to describe the image - self.ps_catalog: pandas.core.frame.DataFrame - Data of the point sources - freq: float - frequency - """ - # Init - npix = hp.nside2npix(self.nside) - hpmap = np.zeros((npix,)) - # Gen Tb list - Tb_list = self.calc_Tb(freq) - # Iteratively draw the ps - num_ps = self.ps_catalog.shape[0] - for i in range(num_ps): - # Angle to pix - lat = (self.ps_catalog['Lat (deg)'] + 90) / 180 * np.pi - lon = self.ps_catalog['Lon (deg)'] / 180 * np.pi - pix = hp.ang2pix(self.nside, lat, lon) - # Gen hpmap - hpmap[pix] += Tb_list[i] - - return hpmap - - def draw_ps(self, freq): - """ - Read csv ps list file, and generate the healpix structure vector - with the respect frequency. - """ - # Init - num_freq = len(freq) - npix = hp.nside2npix(self.nside) - hpmaps = np.zeros((npix, num_freq)) - - # Gen ps_catalog - self.gen_catalog() - # get hpmaps - for i in range(num_freq): - hpmaps[:, i] = self.draw_single_ps(freq[i]) - - return hpmaps - - def calc_single_Tb(self, area, freq): - """ - Calculate brightness temperatur of a single ps - - Parameters - ------------ - area: float - Area of the PS - Unit: [arcsec^2] - freq: `~astropy.units.Quantity` - Frequency, e.g., `1.0*au.MHz` - - Return - ------ - Tb:`~astropy.units.Quantity` - Average brightness temperature, e.g., `1.0*au.K` - """ - # Init - freq_ref = 1400 # [MHz] - freq = freq # [MHz] - # Luminosity at 1400MHz - lumo_1400 = self.lumo # [Jy] - # Calc flux - flux = (freq / freq_ref)**(-0.7) * lumo_1400 - # Calc brightness temperature - Tb = convert.Fnu_to_Tb(flux, area, freq) - - return Tb - - def calc_Tb(self, freq): - """ - Calculate the surface brightness temperature of the point sources. - - Parameters - ------------ - freq: `~astropy.units.Quantity` - Frequency, e.g., `1.0*au.MHz` - - Return - ------ - Tb_list: list - Point sources brightness temperature - """ - # Tb_list - num_ps = self.ps_catalog.shape[0] - Tb_list = np.zeros((num_ps,)) - sr_to_arcsec2 = (np.rad2deg(1) * 3600) ** 2 # [sr] -> [arcsec^2] - # Iteratively calculate Tb - for i in range(num_ps): - ps_area = self.ps_catalog['Area (sr)'][i] # [sr] - area = ps_area * sr_to_arcsec2 - Tb_list[i] = self.calc_single_Tb(area, freq) - - return Tb_list |