diff options
Diffstat (limited to 'fg21sim/extragalactic/pointsources')
-rw-r--r-- | fg21sim/extragalactic/pointsources/__init__.py | 4 | ||||
-rw-r--r-- | fg21sim/extragalactic/pointsources/base.py | 203 | ||||
-rw-r--r-- | fg21sim/extragalactic/pointsources/fr1.py | 357 | ||||
-rw-r--r-- | fg21sim/extragalactic/pointsources/fr2.py | 382 | ||||
-rw-r--r-- | fg21sim/extragalactic/pointsources/pointsources.py | 128 | ||||
-rw-r--r-- | fg21sim/extragalactic/pointsources/psparams.py | 79 | ||||
-rw-r--r-- | fg21sim/extragalactic/pointsources/radioquiet.py | 190 | ||||
-rw-r--r-- | fg21sim/extragalactic/pointsources/starbursting.py | 239 | ||||
-rw-r--r-- | fg21sim/extragalactic/pointsources/starforming.py | 258 |
9 files changed, 0 insertions, 1840 deletions
diff --git a/fg21sim/extragalactic/pointsources/__init__.py b/fg21sim/extragalactic/pointsources/__init__.py deleted file mode 100644 index ea60028..0000000 --- a/fg21sim/extragalactic/pointsources/__init__.py +++ /dev/null @@ -1,4 +0,0 @@ -# Copyright (c) 2016 Zhixian MA <zxma_sjtu@qq.com>
-# MIT license
-
-from .pointsources import PointSources # noqa: F401
diff --git a/fg21sim/extragalactic/pointsources/base.py b/fg21sim/extragalactic/pointsources/base.py deleted file mode 100644 index 1544f5b..0000000 --- a/fg21sim/extragalactic/pointsources/base.py +++ /dev/null @@ -1,203 +0,0 @@ -# Copyright (c) 2016 Zhixian MA <zxma_sjtu@qq.com> -# MIT license - -""" -Simulation of point sources for 21cm signal detection - -Point sources types -------------------- -1. Star forming (SF) galaxies -2. Star bursting (SB) galaxies -3. Radio quiet AGN (RQ_AGN) -4. Faranoff-Riley I (FRI) -5. Faranoff-Riley II (FRII) - -References ----------- -[1] Wilman et al., - "A semi-empirical simulation of the extragalactic radio continuum - sky for next generation radio telescopes", - 2008, MNRAS, 388, 1335-1348. - http://adsabs.harvard.edu/abs/2008MNRAS.388.1335W -[2] Jelic et al., - "Foreground simulations for the LOFAR-Epoch of Reionization - Experiment", - 2008, MNRAS, 389, 1319-1335. - http://adsabs.harvard.edu/abs/2008MNRAS.389.1319W -[3] Spherical uniform distribution - https://www.jasondavies.com/maps/random-points/ -""" -import os -import numpy as np -import pandas as pd -import healpy as hp - -from .psparams import PixelParams - - -class BasePointSource: - """ - The basic class of point sources - - Parameters - ---------- - z: float; - Redshift, z ~ U(0,20) - dA: au.Mpc; - Angular diameter distance, which is calculated according to the - cosmology constants. In this work, it is calculated by module - basic_params - lumo: au.Jy; - Luminosity at the reference frequency. - lat: au.deg; - The colatitude angle in the spherical coordinate system - lon: au.deg; - The longtitude angle in the spherical coordinate system - area: au.sr; - Area of the point sources, sr = rad^2 - - """ - # Init - - def __init__(self, configs): - # configures - self.configs = configs - # PS_list information - self.columns = ['z', 'dA (Mpc)', 'luminosity (Jy)', 'Lat (deg)', - 'Lon (deg)', 'Area (sr)'] - self.nCols = len(self.columns) - self._set_configs() - - def _set_configs(self): - """ - Load the configs and set the corresponding class attributes. - """ - comp = "extragalactic/pointsources/" - # common - self.nside = self.configs.getn("common/nside") - # resolution - self.resolution = self.configs.getn(comp+"resolution") - # save flag - self.save = self.configs.getn(comp+"save") - # Output_dir - self.output_dir = self.configs.get_path(comp+"output_dir") - - def calc_number_density(self): - pass - - def calc_cdf(self): - """ - Calculate cumulative distribution functions for simulating of - samples with corresponding reshift and luminosity. - - Parameter - ----------- - rho_mat: np.ndarray rho(lumo,z) - The number density matrix (joint-distribution of z and flux) - of this type of PS. - - Returns - ------- - cdf_z, cdf_lumo: np.ndarray - Cumulative distribution functions of redshift and flux. - """ - # Normalization - rho_mat = self.rho_mat - rho_sum = np.sum(rho_mat) - rho_norm = rho_mat / rho_sum - # probability distribution of redshift - pdf_z = np.sum(rho_norm, axis=0) - pdf_lumo = np.sum(rho_norm, axis=1) - # Cumulative function - cdf_z = np.zeros(pdf_z.shape) - cdf_lumo = np.zeros(pdf_lumo.shape) - for i in range(len(pdf_z)): - cdf_z[i] = np.sum(pdf_z[:i]) - for i in range(len(pdf_lumo)): - cdf_lumo[i] = np.sum(pdf_lumo[:i]) - - return cdf_z, cdf_lumo - - def get_lumo_redshift(self): - """ - Randomly generate redshif and luminosity at ref frequency using - the CDF functions. - - Paramaters - ---------- - df_z, cdf_lumo: np.ndarray - Cumulative distribution functions of redshift and flux. - zbin,lumobin: np.ndarray - Bins of redshif and luminosity. - - Returns - ------- - z: float - Redshift. - lumo: au.W/Hz/sr - Luminosity. - """ - # Uniformlly generate random number in interval [0,1] - rnd_z = np.random.uniform(0, 1) - rnd_lumo = np.random.uniform(0, 1) - # Get redshift - dist_z = np.abs(self.cdf_z - rnd_z) - idx_z = np.where(dist_z == dist_z.min()) - z = self.zbin[idx_z[0]] - # Get luminosity - dist_lumo = np.abs(self.cdf_lumo - rnd_lumo) - idx_lumo = np.where(dist_lumo == dist_lumo.min()) - lumo = 10 ** self.lumobin[idx_lumo[0]] - - return float(z), float(lumo) - - def gen_single_ps(self): - """ - Generate single point source, and return its data as a list. - """ - # Redshift and luminosity - self.z, self.lumo = self.get_lumo_redshift() - # angular diameter distance - self.param = PixelParams(self.z) - self.dA = self.param.dA - # W/Hz/Sr to Jy - dA = self.dA * 3.0856775814671917E+22 # Mpc to meter - self.lumo = self.lumo / dA**2 / (10.0**-24) # [Jy] - # Position - x = np.random.uniform(0, 1) - self.lat = (np.arccos(2 * x - 1) / np.pi * 180 - 90) # [deg] - self.lon = np.random.uniform(0, np.pi * 2) / np.pi * 180 # [deg] - # Area - npix = hp.nside2npix(self.nside) - self.area = 4 * np.pi / npix # [sr] - - ps_list = [self.z, self.dA, self.lumo, self.lat, self.lon, self.area] - return ps_list - - def gen_catalog(self): - """ - Generate num_ps of point sources and save them into a csv file. - """ - # Init - ps_table = np.zeros((self.num_ps, self.nCols)) - for x in range(self.num_ps): - ps_table[x, :] = self.gen_single_ps() - - # Transform into Dataframe - self.ps_catalog = pd.DataFrame(ps_table, columns=self.columns, - index=list(range(self.num_ps))) - - def save_as_csv(self): - """Save the catalog""" - if not os.path.exists(self.output_dir): - os.mkdir(self.output_dir) - - pattern = "{prefix}.csv" - filename = pattern.format(prefix=self.prefix) - - # save to csv - if self.save: - file_name = os.path.join(self.output_dir, filename) - self.ps_catalog.to_csv(file_name) - - return file_name diff --git a/fg21sim/extragalactic/pointsources/fr1.py b/fg21sim/extragalactic/pointsources/fr1.py deleted file mode 100644 index 4d337eb..0000000 --- a/fg21sim/extragalactic/pointsources/fr1.py +++ /dev/null @@ -1,357 +0,0 @@ -# Copyright (c) 2016 Zhixian MA <zxma_sjtu@qq.com> -# MIT license - -import numpy as np -import healpy as hp - -from .psparams import PixelParams -from .base import BasePointSource -from ...utils import grid -from ...utils import convert - - -class FRI(BasePointSource): - """ - Generate Faranoff-Riley I (FRI) AGN - - Parameters - ---------- - lobe_maj: float - The major half axis of the lobe - lobe_min: float - The minor half axis of the lobe - lobe_ang: float - The rotation angle of the lobe with respect to line of sight - - Reference - ---------- - [1] Wang J et al., - "How to Identify and Separate Bright Galaxy Clusters from the - Low-frequency Radio Sky?", - 2010, ApJ, 723, 620-633. - http://adsabs.harvard.edu/abs/2010ApJ...723..620W - [2] Fast cirles drawing - https://github.com/liweitianux/fg21sim/fg21sim/utils/draw.py - https://github.com/liweitianux/fg21sim/fg21sim/utils/grid.py - """ - - def __init__(self, configs): - super().__init__(configs) - self.columns.extend( - ['lobe_maj (rad)', 'lobe_min (rad)', 'lobe_ang (deg)']) - self.nCols = len(self.columns) - self._set_configs() - # Paramters for core/lobe ratio - # Willman et al. 2008 Sec2.5.(iii)-(iv) - self.xmed = -2.6 - # Lorentz factor of the jet - self.gamma = 6 - # Number density matrix - self.rho_mat = self.calc_number_density() - # Cumulative distribution of z and lumo - self.cdf_z, self.cdf_lumo = self.calc_cdf() - - def _set_configs(self): - """Load the configs and set the corresponding class attributes""" - super()._set_configs() - pscomp = "extragalactic/pointsources/FRI/" - # point sources amount - self.num_ps = self.configs.getn(pscomp+"numps") - # prefix - self.prefix = self.configs.getn(pscomp+"prefix") - # redshift bin - z_type = self.configs.getn(pscomp+"z_type") - if z_type == 'custom': - start = self.configs.getn(pscomp+"z_start") - stop = self.configs.getn(pscomp+"z_stop") - step = self.configs.getn(pscomp+"z_step") - self.zbin = np.arange(start, stop + step, step) - else: - self.zbin = np.arange(0.1, 10, 0.05) - # luminosity bin - lumo_type = self.configs.getn(pscomp+"lumo_type") - if lumo_type == 'custom': - start = self.configs.getn(pscomp+"lumo_start") - stop = self.configs.getn(pscomp+"lumo_stop") - step = self.configs.getn(pscomp+"lumo_step") - self.lumobin = np.arange(start, stop + step, step) - else: - self.lumobin = np.arange(20, 28, 0.1) # [W/Hz/sr] - - def calc_number_density(self): - """ - Calculate number density rho(lumo,z) of FRI - - References - ---------- - [1] Wilman et al., - "A semi-empirical simulation of the extragalactic radio continuum - sky for next generation radio telescopes", - 2008, MNRAS, 388, 1335-1348. - http://adsabs.harvard.edu/abs/2008MNRAS.388.1335W - [2] Willott et al., - "The radio luminosity function from the low-frequency 3CRR, - 6CE and 7CRS complete samples", - 2001, MNRAS, 322, 536-552. - http://adsabs.harvard.edu/abs/2001MNRAS.322..536W - - Returns - ------- - rho_mat: np.ndarray - Number density matris (joint-distribution of luminosity and - reshift). - """ - # Init - rho_mat = np.zeros((len(self.lumobin), len(self.zbin))) - # Parameters - # Refer to [2] Table. 1 model C and Willman's section 2.4 - alpha = 0.539 # spectral index - lumo_star = 10.0**26.1 # critical luminosity - rho_l0 = 10.0**(-7.120) # normalization constant - z1 = 0.706 # cut-off redshift - z2 = 2.5 # cut-off redshift adviced by Willman - k1 = 4.30 # index of space density revolution - # Calculation - for i, z in enumerate(self.zbin): - if z <= z1: - rho_mat[:, i] = ((rho_l0 * (10**self.lumobin / lumo_star) ** - (-alpha) * - np.exp(-10**self.lumobin / lumo_star)) * - (1 + z)**k1) - elif z <= z2: - rho_mat[:, i] = ((rho_l0 * (10**self.lumobin / lumo_star) ** - (-alpha) * - np.exp(-10**self.lumobin / lumo_star)) * - (1 + z1)**k1) - else: - rho_mat[:, i] = ((rho_l0 * (10**self.lumobin / lumo_star) ** - (-alpha) * - np.exp(-10**self.lumobin / lumo_star)) * - (1 + z)**-z2) - - return rho_mat - - def gen_lobe(self): - """ - Calculate lobe parameters - - References - ---------- - [1] Wilman et al., - "A semi-empirical simulation of the extragalactic radio continuum - sky for next generation radio telescopes", - 2008, MNRAS, 388, 1335-1348. - http://adsabs.harvard.edu/abs/2008MNRAS.388.1335W - - Return - ------ - lobe: list - lobe = [lobe_maj, lobe_min, lobe_ang], which represent the major - and minor axes and the rotation angle. - """ - D0 = 1 # [Mpc] - self.lobe_maj = 0.5 * np.random.uniform(0, D0 * (1 + self.z)**(-1.4)) - self.lobe_min = self.lobe_maj * np.random.uniform(0.2, 1) - self.lobe_ang = np.random.uniform(0, np.pi) / np.pi * 180 - - # Transform to pixel - self.lobe_maj = self.param.get_angle(self.lobe_maj) - self.lobe_min = self.param.get_angle(self.lobe_min) - lobe = [self.lobe_maj, self.lobe_min, self.lobe_ang] - - return lobe - - def gen_single_ps(self): - """ - Generate single point source, and return its data as a list. - """ - # Redshift and luminosity - self.z, self.lumo = self.get_lumo_redshift() - # angular diameter distance - self.param = PixelParams(self.z) - self.dA = self.param.dA - # W/Hz/Sr to Jy - dA = self.dA * 3.0856775814671917E+22 # Mpc to meter - self.lumo = self.lumo / dA**2 / (10.0**-24) # [Jy] - # Position - x = np.random.uniform(0, 1) - self.lat = (np.arccos(2 * x - 1) / np.pi * 180 - 90) # [deg] - self.lon = np.random.uniform(0, np.pi * 2) / np.pi * 180 # [deg] - # lobe - lobe = self.gen_lobe() - # Area - self.area = np.pi * self.lobe_maj * self.lobe_min - - ps_list = [self.z, self.dA, self.lumo, self.lat, self.lon, self.area] - ps_list.extend(lobe) - - return ps_list - - def draw_single_ps(self, freq): - """ - Designed to draw the elliptical lobes of FRI and FRII - - Prameters - --------- - nside: int and dyadic - self.ps_catalog: pandas.core.frame.DataFrame - Data of the point sources - ps_type: int - Class type of the point soruces - freq: float - frequency - """ - # Init - resolution = self.resolution / 60 # [degree] - npix = hp.nside2npix(self.nside) - hpmap = np.zeros((npix,)) - num_ps = self.ps_catalog.shape[0] - # Gen flux list - Tb_list = self.calc_Tb(freq) - ps_lobe = Tb_list[:, 1] - # Iteratively draw ps - for i in range(num_ps): - # Parameters - c_lat = self.ps_catalog['Lat (deg)'][i] # core lat [au.deg] - c_lon = self.ps_catalog['Lon (deg)'][i] # core lon [au.deg] - lobe_maj = self.ps_catalog['lobe_maj (rad)'][ - i] * 180 / np.pi # [deg] - lobe_min = self.ps_catalog['lobe_min (rad)'][ - i] * 180 / np.pi # [deg] - lobe_ang = self.ps_catalog['lobe_ang (deg)'][ - i] / 180 * np.pi # [rad] - - # Lobe1 - lobe1_lat = (lobe_maj / 2) * np.cos(lobe_ang) - lobe1_lat = c_lat + lobe1_lat - lobe1_lon = (lobe_maj / 2) * np.sin(lobe_ang) - lobe1_lon = c_lon + lobe1_lon - # draw - # Fill with ellipse - lon, lat, gridmap = grid.make_grid_ellipse( - (lobe1_lon, lobe1_lat), (lobe_maj, lobe_min), - resolution, lobe_ang / np.pi * 180) - indices, values = grid.map_grid_to_healpix( - (lon, lat, gridmap), self.nside) - hpmap[indices] += ps_lobe[i] - - # Lobe2 - lobe2_lat = (lobe_maj / 2) * np.cos(lobe_ang + np.pi) - lobe2_lat = c_lat + lobe2_lat - lobe2_lon = (lobe_maj / 2) * np.sin(lobe_ang + np.pi) - lobe2_lon = c_lon + lobe2_lon - # draw - # Fill with ellipse - lon, lat, gridmap = grid.make_grid_ellipse( - (lobe2_lon, lobe2_lat), (lobe_maj, lobe_min), - resolution, lobe_ang / np.pi * 180) - indices, values = grid.map_grid_to_healpix( - (lon, lat, gridmap), self.nside) - hpmap[indices] += ps_lobe[i] - - # Core - pix_tmp = hp.ang2pix(self.nside, - (self.ps_catalog['Lat (deg)'] + 90) / - 180 * np.pi, self.ps_catalog['Lon (deg)'] / - 180 * np.pi) - ps_core = Tb_list[:, 0] - hpmap[pix_tmp] += ps_core - - return hpmap - - def draw_ps(self, freq): - """ - Read csv ps list file, and generate the healpix structure vector - with the respect frequency. - """ - # Init - num_freq = len(freq) - npix = hp.nside2npix(self.nside) - hpmaps = np.zeros((npix, num_freq)) - - # Gen ps_catalog - self.gen_catalog() - # get hpmaps - for i in range(num_freq): - hpmaps[:, i] = self.draw_single_ps(freq[i]) - - return hpmaps - - def calc_single_Tb(self, area, freq): - """ - Calculate brightness temperatur of a single ps - - Parameters - ------------ - area: float - Area of the PS - Unit: [arcsec^2] - freq: `~astropy.units.Quantity` - Frequency, e.g., `1.0*au.MHz` - - Return - ------- - Tb:`~astropy.units.Quantity` - Average brightness temperature, e.g., `1.0*au.K` - """ - # Init - freq_ref = 151 # [MHz] - freq = freq # [MHz] - # Luminosity at 151MHz - lumo_151 = self.lumo # [Jy] - # Calc flux - # core-to-extend ratio - ang = self.lobe_ang / 180 * np.pi - x = np.random.normal(self.xmed, 0.5) - beta = np.sqrt((self.gamma**2 - 1) / self.gamma) - B_theta = 0.5 * ((1 - beta * np.cos(ang))**-2 + - (1 + beta * np.cos(ang))**-2) - ratio_obs = 10**x * B_theta - # Core - lumo_core = ratio_obs / (1 + ratio_obs) * lumo_151 - a0 = (np.log10(lumo_core) - 0.07 * - np.log10(freq_ref * 10.0E-3) + - 0.29 * np.log10(freq_ref * 10.0E-3) * - np.log10(freq_ref * 10.0E-3)) - lgs = (a0 + 0.07 * np.log10(freq * 10.0E-3) - 0.29 * - np.log10(freq * 10.0E-3) * - np.log10(freq * 10.0E-3)) - flux_core = 10**lgs # [Jy] - # core area - npix = hp.nside2npix(self.nside) - sr_to_arcsec2 = (np.rad2deg(1) * 3600) ** 2 # [sr] -> [arcsec^2] - core_area = 4 * np.pi / npix * sr_to_arcsec2 # [arcsec^2] - Tb_core = convert.Fnu_to_Tb(flux_core, core_area, freq) # [K] - # lobe - lumo_lobe = lumo_151 * (1 - ratio_obs) / (1 + ratio_obs) # [Jy] - flux_lobe = (freq / freq_ref)**(-0.75) * lumo_lobe - Tb_lobe = convert.Fnu_to_Tb(flux_lobe, area, freq) # [K] - - Tb = [Tb_core, Tb_lobe] - return Tb - - def calc_Tb(self, freq): - """ - Calculate the surface brightness temperature of the point sources. - - Parameters - ------------ - freq: `~astropy.units.Quantity` - Frequency, e.g., `1.0*au.MHz` - - Return - ------ - Tb_list: list - Point sources brightness temperature - """ - # Tb_list - num_ps = self.ps_catalog.shape[0] - Tb_list = np.zeros((num_ps, 2)) - sr_to_arcsec2 = (np.rad2deg(1) * 3600) ** 2 # [sr] -> [arcsec^2] - # Iteratively calculate Tb - for i in range(num_ps): - ps_area = self.ps_catalog['Area (sr)'][i] # [sr] - area = ps_area * sr_to_arcsec2 - Tb_list[i, :] = self.calc_single_Tb(area, freq) - - return Tb_list diff --git a/fg21sim/extragalactic/pointsources/fr2.py b/fg21sim/extragalactic/pointsources/fr2.py deleted file mode 100644 index ec565d1..0000000 --- a/fg21sim/extragalactic/pointsources/fr2.py +++ /dev/null @@ -1,382 +0,0 @@ -# Copyright (c) 2016 Zhixian MA <zxma_sjtu@qq.com> -# MIT license - -import numpy as np -import healpy as hp - -from .base import BasePointSource -from .psparams import PixelParams -from ...utils import grid -from ...utils import convert - - -class FRII(BasePointSource): - """ - Generate Faranoff-Riley II (FRII) AGN - - Parameters - ---------- - lobe_maj: float - The major half axis of the lobe - lobe_min: float - The minor half axis of the lobe - lobe_ang: float - The rotation angle of the lobe correspoind to line of sight - - Reference - ---------- - [1] Wang J et al., - "How to Identify and Separate Bright Galaxy Clusters from the - Low-frequency Radio Sky?", - 2010, ApJ, 723, 620-633. - http://adsabs.harvard.edu/abs/2010ApJ...723..620W - [2] Fast cirles drawing - https://github.com/liweitianux/fg21sim/fg21sim/utils/draw.py - https://github.com/liweitianux/fg21sim/fg21sim/utils/grid.py - """ - - def __init__(self, configs): - super().__init__(configs) - self.columns.extend( - ['lobe_maj (rad)', 'lobe_min (rad)', 'lobe_ang (deg)']) - self.nCols = len(self.columns) - self._set_configs() - # Paramters for core/lobe ratio - # Willman et al. 2008 Sec2.5.(iii)-(iv) - self.xmed = -2.8 - # Lorentz factor of the jet - self.gamma = 8 - # Number density matrix - self.rho_mat = self.calc_number_density() - # Cumulative distribution of z and lumo - self.cdf_z, self.cdf_lumo = self.calc_cdf() - - def _set_configs(self): - """Load the configs and set the corresponding class attributes""" - super()._set_configs() - pscomp = "extragalactic/pointsources/FRII/" - # point sources amount - self.num_ps = self.configs.getn(pscomp+"numps") - # prefix - self.prefix = self.configs.getn(pscomp+"prefix") - # redshift bin - z_type = self.configs.getn(pscomp+"z_type") - if z_type == 'custom': - start = self.configs.getn(pscomp+"z_start") - stop = self.configs.getn(pscomp+"z_stop") - step = self.configs.getn(pscomp+"z_step") - self.zbin = np.arange(start, stop + step, step) - else: - self.zbin = np.arange(0.1, 10, 0.05) - # luminosity bin - lumo_type = self.configs.getn(pscomp+"lumo_type") - if lumo_type == 'custom': - start = self.configs.getn(pscomp+"lumo_start") - stop = self.configs.getn(pscomp+"lumo_stop") - step = self.configs.getn(pscomp+"lumo_step") - self.lumobin = np.arange(start, stop + step, step) - else: - self.lumobin = np.arange(25.5, 30.5, 0.1) # [W/Hz/sr] - - def calc_number_density(self): - """ - Calculate number density rho(lumo,z) of FRI - - References - ---------- - [1] Wilman et al., - "A semi-empirical simulation of the extragalactic radio continuum - sky for next generation radio telescopes", - 2008, MNRAS, 388, 1335-1348. - http://adsabs.harvard.edu/abs/2008MNRAS.388.1335W - [2] Willott et al., - "The radio luminosity function from the low-frequency 3CRR, - 6CE and 7CRS complete samples", - 2001, MNRAS, 322, 536-552. - http://adsabs.harvard.edu/abs/2001MNRAS.322..536W - - Returns - ------- - rho_mat: np.ndarray - Number density matris (joint-distribution of luminosity and - reshift). - """ - # Init - rho_mat = np.zeros((len(self.lumobin), len(self.zbin))) - # Parameters - # Refer to [2] Table. 1 model C and Willman's section 2.4 - alpha = 2.27 # spectral index - lumo_star = 10.0**26.95 # critical luminosity - rho_l0 = 10.0**(-6.196) # normalization constant - z0 = 1.91 # center redshift - z2 = 1.378 # variance - # Calculation - for i, z in enumerate(self.zbin): - # space density revolusion - fh = np.exp(-0.5 * (z - z0)**2 / z2**2) - rho_mat[:, i] = ((rho_l0 * (10**self.lumobin / lumo_star) ** - (-alpha) * - np.exp(-lumo_star / 10.0**self.lumobin)) * - fh) - - return rho_mat - - def gen_lobe(self): - """ - Calculate lobe parameters - - References - ---------- - [1] Wilman et al., - "A semi-empirical simulation of the extragalactic radio continuum - sky for next generation radio telescopes", - 2008, MNRAS, 388, 1335-1348. - http://adsabs.harvard.edu/abs/2008MNRAS.388.1335W - - Return - ------ - lobe: list - lobe = [lobe_maj, lobe_min, lobe_ang], which represent the major - and minor axes and the rotation angle. - """ - D0 = 1 # [Mpc] - self.lobe_maj = 0.5 * np.random.uniform(0, D0 * (1 + self.z)**(-1.4)) - self.lobe_min = self.lobe_maj * np.random.uniform(0.2, 1) - self.lobe_ang = np.random.uniform(0, np.pi) / np.pi * 180 - - # Transform to pixel - self.lobe_maj = self.param.get_angle(self.lobe_maj) - self.lobe_min = self.param.get_angle(self.lobe_min) - lobe = [self.lobe_maj, self.lobe_min, self.lobe_ang] - - return lobe - - def gen_single_ps(self): - """ - Generate single point source, and return its data as a list. - - """ - # Redshift and luminosity - self.z, self.lumo = self.get_lumo_redshift() - self.lumo_sr = self.lumo - # angular diameter distance - self.param = PixelParams(self.z) - self.dA = self.param.dA - # W/Hz/Sr to Jy - dA = self.dA * 3.0856775814671917E+22 # Mpc to meter - self.lumo = self.lumo / dA**2 / (10.0**-24) # [Jy] - # Position - x = np.random.uniform(0, 1) - self.lat = (np.arccos(2 * x - 1) / np.pi * 180 - 90) # [deg] - self.lon = np.random.uniform(0, np.pi * 2) / np.pi * 180 # [deg] - # lobe - lobe = self.gen_lobe() - # Area - self.area = np.pi * self.lobe_maj * self.lobe_min - - ps_list = [self.z, self.dA, self.lumo, self.lat, self.lon, self.area] - ps_list.extend(lobe) - - return ps_list - - def draw_single_ps(self, freq): - """ - Designed to draw the elliptical lobes of FRI and FRII - - Prameters - --------- - nside: int and dyadic - self.ps_catalog: pandas.core.frame.DataFrame - Data of the point sources - ps_type: int - Class type of the point soruces - freq: float - frequency - """ - # Init - resolution = self.resolution / 60 # [degree] - npix = hp.nside2npix(self.nside) - hpmap = np.zeros((npix,)) - num_ps = self.ps_catalog.shape[0] - # Gen flux list - Tb_list = self.calc_Tb(freq) - ps_lobe = Tb_list[:, 1] - # Iteratively draw ps - for i in range(num_ps): - # Parameters - c_lat = self.ps_catalog['Lat (deg)'][i] # core lat [deg] - c_lon = self.ps_catalog['Lon (deg)'][i] # core lon [au.deg] - lobe_maj = self.ps_catalog['lobe_maj (rad)'][ - i] * 180 / np.pi # [deg] - lobe_min = self.ps_catalog['lobe_min (rad)'][ - i] * 180 / np.pi # [deg] - lobe_ang = self.ps_catalog['lobe_ang (deg)'][ - i] / 180 * np.pi # [rad] - # Offset to the core, refer to Willman Sec2.5.vii - offset = lobe_maj * 2 * np.random.uniform(0.2, 0.8) - # Lobe1 - lobe1_lat = (lobe_maj / 2 + offset) * np.cos(lobe_ang) - lobe1_lat = c_lat + lobe1_lat - lobe1_lon = (lobe_maj / 2 + offset) * np.sin(lobe_ang) - lobe1_lon = c_lon + lobe1_lon - # draw - # Fill with ellipse - lon, lat, gridmap = grid.make_grid_ellipse( - (lobe1_lon, lobe1_lat), (lobe_maj, lobe_min), - resolution, lobe_ang / np.pi * 180) - indices, values = grid.map_grid_to_healpix( - (lon, lat, gridmap), self.nside) - hpmap[indices] += ps_lobe[i] - - # lobe1_hotspot - lobe1_hot_lat = (lobe_maj + offset) * np.cos(lobe_ang) - lobe1_hot_lat = (c_lat + 90 + lobe1_lat) / 180 * np.pi - lobe1_hot_lon = (lobe_maj + offset) * np.sin(lobe_ang) - lobe1_hot_lon = (c_lon + lobe1_lon) / 180 * np.pi - if lobe1_hot_lat < 0: - lobe1_hot_lat += np.pi - elif lobe1_hot_lat > np.pi: - lobe1_hot_lat -= np.pi - lobe1_hot_index = hp.ang2pix( - self.nside, lobe1_hot_lat, lobe1_hot_lon) - hpmap[lobe1_hot_index] += Tb_list[i, 2] - - # Lobe2 - lobe2_lat = (lobe_maj / 2) * np.cos(lobe_ang + np.pi) - lobe2_lat = c_lat + lobe2_lat - lobe2_lon = (lobe_maj / 2) * np.sin(lobe_ang + np.pi) - lobe2_lon = c_lon + lobe2_lon - # draw - # Fill with ellipse - lon, lat, gridmap = grid.make_grid_ellipse( - (lobe2_lon, lobe2_lat), (lobe_maj, lobe_min), - resolution, lobe_ang / np.pi * 180) - indices, values = grid.map_grid_to_healpix( - (lon, lat, gridmap), self.nside) - hpmap[indices] += ps_lobe[i] - - # lobe2_hotspot - lobe2_hot_lat = (lobe_maj + offset) * np.cos(lobe_ang + np.pi) - lobe2_hot_lat = (c_lat + 90 + lobe1_lat) / 180 * np.pi - lobe2_hot_lon = (lobe_maj + offset) * np.sin(lobe_ang + np.pi) - lobe2_hot_lon = (c_lon + lobe1_lon) / 180 * np.pi - if lobe2_hot_lat < 0: - lobe2_hot_lat += np.pi - elif lobe2_hot_lat > np.pi: - lobe2_hot_lat -= np.pi - lobe2_hot_index = hp.ang2pix( - self.nside, lobe2_hot_lat, lobe2_hot_lon) - hpmap[lobe2_hot_index] += Tb_list[i, 2] - - # Core - pix_tmp = hp.ang2pix(self.nside, - (self.ps_catalog['Lat (deg)'] + 90) / - 180 * np.pi, self.ps_catalog['Lon (deg)'] / - 180 * np.pi) - ps_core = Tb_list[:, 0] - hpmap[pix_tmp] += ps_core - - return hpmap - - def draw_ps(self, freq): - """ - Read csv ps list file, and generate the healpix structure vector - with the respect frequency. - """ - # Init - num_freq = len(freq) - npix = hp.nside2npix(self.nside) - hpmaps = np.zeros((npix, num_freq)) - - # Gen ps_catalog - self.gen_catalog() - # get hpmaps - for i in range(num_freq): - hpmaps[:, i] = self.draw_single_ps(freq[i]) - - return hpmaps - - def calc_single_Tb(self, area, freq): - """ - Calculate brightness temperatur of a single ps - - Parameters - ------------ - area: float - Area of the PS - Unit: [arcsec^2] - freq: `~astropy.units.Quantity` - Frequency, e.g., `1.0*au.MHz` - - Return - ------ - Tb:`~astropy.units.Quantity` - Average brightness temperature, e.g., `1.0*au.K` - """ - # Init - freq_ref = 151 # [MHz] - freq = freq # [MHz] - # Luminosity at 151MHz - lumo_151 = self.lumo # [Jy] - # Calc flux - # core-to-extend ratio - ang = self.lobe_ang / 180 * np.pi - x = np.random.normal(self.xmed, 0.5) - beta = np.sqrt((self.gamma**2 - 1) / self.gamma) - B_theta = 0.5 * ((1 - beta * np.cos(ang))**-2 + - (1 + beta * np.cos(ang))**-2) - ratio_obs = 10**x * B_theta - # Core - lumo_core = ratio_obs / (1 + ratio_obs) * lumo_151 - a0 = (np.log10(lumo_core) - 0.07 * - np.log10(freq_ref * 10.0E-3) + - 0.29 * np.log10(freq_ref * 10.0E-3) * - np.log10(freq_ref * 10.0E-3)) - lgs = (a0 + 0.07 * np.log10(freq * 10.0E-3) - 0.29 * - np.log10(freq * 10.0E-3) * - np.log10(freq * 10.0E-3)) - flux_core = 10**lgs # [Jy] - # core area - npix = hp.nside2npix(self.nside) - sr_to_arcsec2 = (np.rad2deg(1) * 3600) ** 2 # [sr] -> [arcsec^2] - core_area = 4 * np.pi / npix * sr_to_arcsec2 # [arcsec^2] - Tb_core = convert.Fnu_to_Tb(flux_core, core_area, freq) # [K] - # lobe - lumo_lobe = lumo_151 * (1 - ratio_obs) / (1 + ratio_obs) # [Jy] - flux_lobe = (freq / freq_ref)**(-0.75) * lumo_lobe - Tb_lobe = convert.Fnu_to_Tb(flux_lobe, area, freq) # [K] - - # hotspots - # Willman Eq. (3) - f_hs = (0.4 * (np.log10(self.lumo_sr) - 25.5) + - np.random.uniform(-0.5, 0.5)) - Tb_hotspot = Tb_lobe * (1 + f_hs) - Tb = [Tb_core, Tb_lobe, Tb_hotspot] - - return Tb - - def calc_Tb(self, freq): - """ - Calculate the surface brightness temperature of the point sources. - - Parameters - ------------ - freq: `~astropy.units.Quantity` - Frequency, e.g., `1.0*au.MHz` - - Return - ------ - Tb_list: list - Point sources brightness temperature - """ - # Tb_list - num_ps = self.ps_catalog.shape[0] - Tb_list = np.zeros((num_ps, 3)) - sr_to_arcsec2 = (np.rad2deg(1) * 3600) ** 2 # [sr] -> [arcsec^2] - # Iteratively calculate Tb - for i in range(num_ps): - ps_area = self.ps_catalog['Area (sr)'][i] # [sr] - area = ps_area * sr_to_arcsec2 - Tb_list[i, :] = self.calc_single_Tb(area, freq) - - return Tb_list diff --git a/fg21sim/extragalactic/pointsources/pointsources.py b/fg21sim/extragalactic/pointsources/pointsources.py deleted file mode 100644 index a921e03..0000000 --- a/fg21sim/extragalactic/pointsources/pointsources.py +++ /dev/null @@ -1,128 +0,0 @@ -# Copyright (c) 2016 Zhixian MA <zxma_sjtu@qq.com> -# MIT license - -""" -Extragalactic point sources (ps) simulation -""" - -import logging -import numpy as np -import healpy as hp -from collections import OrderedDict - -from .starforming import StarForming -from .starbursting import StarBursting -from .radioquiet import RadioQuiet -from .fr1 import FRI -from .fr2 import FRII - - -logger = logging.getLogger(__name__) - - -class PointSources: - """ - This class namely pointsource is designed to generate PS catalogs, - read csv format PS lists, calculate the flux and surface brightness - of the sources at different frequencies, and then ouput hpmaps - - Parameters - ---------- - configs: ConfigManager object - An 'ConfigManager' object contains default and user configurations. - For more details, see the example config specification. - - Functions - --------- - preprocessing - Generate the ps catalogs for each type. - simulate_frequency - Simualte point sources at provivded frequency - simulate - Simulate and project PSs to the healpix map. - postprocessing - Save catalogs - """ - PSCOMPONENTS_ALL = OrderedDict([ - ("starforming", StarForming), - ("starbursting", StarBursting), - ("radioquiet", RadioQuiet), - ("FRI", FRI), - ("FRII", FRII), - ]) - - def __init__(self, configs): - self.configs = configs - self._set_configs() - self.pscomps = OrderedDict() - for comp in self.pscomps_id: - logger.info("Initlalize PS component: {0}".format(comp)) - comp_type = self.PSCOMPONENTS_ALL[comp] - self.pscomps[comp] = comp_type(configs) - logger.info("Done initlalize %d PS components!" % - len(self.pscomps)) - - def _set_configs(self): - """Load configs and set the attributes""" - # Prefix of simulated point sources - self.pscomps_id = self.configs.getn("extragalactic/pscomponents") - if self.pscomps_id is None: - self.pscomps_id = ['starforming', 'starbursting', 'radioquiet', - 'FRI', 'FRII'] - print(self.pscomps_id) - # nside of the healpix cell - self.nside = self.configs.getn("common/nside") - # save flag - self.save = self.configs.getn("extragalactic/pointsources/save") - - def preprocess(self): - """Preprocess and generate the catalogs""" - logger.info("Generating PS catalogs...") - # Gen ps_catalog - for pscomp_obj in self.pscomps.values(): - pscomp_obj.gen_catalog() - logger.info("Generating PS catalogs done!") - - def simulate_frequency(self, freq): - """Simulate the point sources and output hpmaps""" - npix = hp.nside2npix(self.nside) - hpmap_f = np.zeros((npix,)) - # Projecting - logger.info("Generating PS hpmaps...") - for pscomp_obj in self.pscomps.values(): - hpmap_f += pscomp_obj.draw_single_ps(freq) - logger.info("Generating PS hpmaps done!") - # XXX/TODO: - # * Output the HEALPix map to file - # * Also return the path to the output file - return (hpmap_f, None) - - def simulate(self, frequencies): - """Simulate the emission (HEALPix) maps of all Galactic SNRs for - every specified frequency. - - Parameters - ---------- - frequency : list[float] - List of frequencies (unit: `self.freq_unit`) where the - simulation performed. - - Returns - ------- - hpmaps : list[1D `~numpy.ndarray`] - List of HEALPix maps (in RING ordering) at each frequency. - """ - hpmaps = [] - for f in np.array(frequencies, ndmin=1): - hpmap_f = self.simulate_frequency(f) - hpmaps.append(hpmap_f) - return hpmaps - - def postprocess(self): - """Perform the post-simulation operations before the end.""" - # Save the catalog actually used in the simulation - if self.save: - logger.info("Saving simulated catalogs...") - for pscomp_obj in self.pscomps.values(): - pscomp_obj.save_as_csv() - logger.info("Saving simulated catalogs done!") diff --git a/fg21sim/extragalactic/pointsources/psparams.py b/fg21sim/extragalactic/pointsources/psparams.py deleted file mode 100644 index 823af72..0000000 --- a/fg21sim/extragalactic/pointsources/psparams.py +++ /dev/null @@ -1,79 +0,0 @@ -# Copyright (c) 2016 Zhixian MA <zxma_sjtu@qq.com> -# MIT license - -""" -Basic parameters to be used in point sources simulation. - -References ----------- -[1] Angular diameter distance, - https://en.wikipedia.org/wiki/Angular_diameter_distance -[2] FlatLambdaCDM, - {http://docs.astropy.org/en/stable/api/astropy.cosmology. - FlatLambdaCDM.html#astropy.cosmology.FlatLambdaCDM} -""" - -from astropy.cosmology import FlatLambdaCDM - - -class PixelParams(): - """ - A class to transform cosmology distance to angles or pixels. - - Parameters - ------------ - H0: float - The hubble constant at z = 0, whose unit is km/s/Mpc - Om0: float - The total matter density. - ang_res: float - Angular resolution, i.e. degree per pixel. (May be useless) - ang_total: list - Total angles of the simulated sky region, whose unit is degree - z : float - Redshift - scale: float - The real object scale. - - Example - ------------ - >>> PixelParams = PixelParams(img_size=(1024,1024),ang_total=(5,5)) - """ - - # Hubble constant at z = 0 - H0 = 71.0 - # Omega0, total matter density - Om0 = 0.27 - # Redshift - z = 0.0 - # Cosmology calculator - cosmo = 0.0 - # angular diameter distance, [Mpc] - dA = 0.0 - # angular resolution - ang_res = 0.0 - - def __init__(self, z=0.0): - self.z = z - self.cosmo = FlatLambdaCDM(H0=self.H0, Om0=self.Om0) - - # angular diameter distance, [Mpc] - self.dA = self.cosmo.angular_diameter_distance(self.z).value - - def get_angle(self, scale=1.0): - """ - Input real object scale, and output the respect observed - angle, and pixels. - """ - ang = scale / self.dA # [rac] - - return ang - - def get_scale(self, ang=1.0): - """ - Input real observed scale, and output the respect - real object scale, and pixels. - """ - scale = ang * self.dA # [Mpc] - - return scale diff --git a/fg21sim/extragalactic/pointsources/radioquiet.py b/fg21sim/extragalactic/pointsources/radioquiet.py deleted file mode 100644 index 0fbb6b2..0000000 --- a/fg21sim/extragalactic/pointsources/radioquiet.py +++ /dev/null @@ -1,190 +0,0 @@ -# Copyright (c) 2016 Zhixian MA <zxma_sjtu@qq.com> -# MIT license - -import numpy as np -import healpy as hp - -from .base import BasePointSource -from ...utils import convert - - -class RadioQuiet(BasePointSource): - - def __init__(self, configs): - super().__init__(configs) - self._set_configs() - # Number density matrix - self.rho_mat = self.calc_number_density() - # Cumulative distribution of z and lumo - self.cdf_z, self.cdf_lumo = self.calc_cdf() - - def _set_configs(self): - """Load the configs and set the corresponding class attributes""" - super()._set_configs() - pscomp = "extragalactic/pointsources/radioquiet/" - # point sources amount - self.num_ps = self.configs.getn(pscomp+"numps") - # prefix - self.prefix = self.configs.getn(pscomp+"prefix") - # redshift bin - z_type = self.configs.getn(pscomp+"z_type") - if z_type == 'custom': - start = self.configs.getn(pscomp+"z_start") - stop = self.configs.getn(pscomp+"z_stop") - step = self.configs.getn(pscomp+"z_step") - self.zbin = np.arange(start, stop + step, step) - else: - self.zbin = np.arange(0.1, 10, 0.05) - # luminosity bin - lumo_type = self.configs.getn(pscomp+"lumo_type") - if lumo_type == 'custom': - start = self.configs.getn(pscomp+"lumo_start") - stop = self.configs.getn(pscomp+"lumo_stop") - step = self.configs.getn(pscomp+"lumo_step") - self.lumobin = np.arange(start, stop + step, step) - else: - self.lumobin = np.arange(18.7, 25.7, 0.1) # [W/Hz/sr] - - def calc_number_density(self): - """ - Calculate number density rho(lumo,z) of FRI - - References - ------------ - [1] Wilman et al., - "A semi-empirical simulation of the extragalactic radio continuum - sky for next generation radio telescopes", - 2008, MNRAS, 388, 1335-1348. - http://adsabs.harvard.edu/abs/2008MNRAS.388.1335W - - Returns - ------- - rho_mat: np.ndarray - Number density matris (joint-distribution of luminosity and - reshift). - """ - # Init - rho_mat = np.zeros((len(self.lumobin), len(self.zbin))) - # Parameters - # Refer to Willman's section 2.4 - alpha = 0.7 # spectral index - lumo_star = 10.0**21.3 # critical luminosity at 1400MHz - rho_l0 = 10.0**(-7) # normalization constant - z1 = 1.9 # cut-off redshift - k1 = -3.27 # index of space density revolution - # Calculation - for i, z in enumerate(self.zbin): - if z <= z1: - rho_mat[:, i] = ((rho_l0 * (10**self.lumobin / lumo_star) ** - (-alpha) * - np.exp(-10**self.lumobin / lumo_star)) * - (1 + z)**k1) - else: - rho_mat[:, i] = ((rho_l0 * (10**self.lumobin / lumo_star) ** - (-alpha) * - np.exp(-10**self.lumobin / lumo_star)) * - (1 + z1)**k1) - return rho_mat - - def draw_single_ps(self, freq): - """ - Designed to draw the radio quiet AGN - - Parameters - ---------- - ImgMat: np.ndarray - Two dimensional matrix, to describe the image - self.ps_catalog: pandas.core.frame.DataFrame - Data of the point sources - freq: float - frequency - """ - # Init - npix = hp.nside2npix(self.nside) - hpmap = np.zeros((npix,)) - # Gen Tb list - Tb_list = self.calc_Tb(freq) - # Iteratively draw the ps - num_ps = self.ps_catalog.shape[0] - for i in range(num_ps): - # Angle to pix - lat = (self.ps_catalog['Lat (deg)'] + 90) / 180 * np.pi - lon = self.ps_catalog['Lon (deg)'] / 180 * np.pi - pix = hp.ang2pix(self.nside, lat, lon) - # Gen hpmap - hpmap[pix] += Tb_list[i] - - return hpmap - - def draw_ps(self, freq): - """ - Read csv ps list file, and generate the healpix structure vector - with the respect frequency. - """ - # Init - num_freq = len(freq) - npix = hp.nside2npix(self.nside) - hpmaps = np.zeros((npix, num_freq)) - - # Gen ps_catalog - self.gen_catalog() - # get hpmaps - for i in range(num_freq): - hpmaps[:, i] = self.draw_single_ps(freq[i]) - - return hpmaps - - def calc_single_Tb(self, area, freq): - """ - Calculate brightness temperatur of a single ps - - Parameters - ------------ - area: float - Area of the PS - Unit: [arcsec^2] - freq: `~astropy.units.Quantity` - Frequency, e.g., `1.0*au.MHz` - - Return - ------ - Tb:`~astropy.units.Quantity` - Average brightness temperature, e.g., `1.0*au.K` - """ - # Init - freq_ref = 1400 # [MHz] - freq = freq # [MHz] - # Luminosity at 1400MHz - lumo_1400 = self.lumo # [Jy] - # Calc flux - flux = (freq / freq_ref)**(-0.7) * lumo_1400 - # Calc brightness temperature - Tb = convert.Fnu_to_Tb(flux, area, freq) - - return Tb - - def calc_Tb(self, freq): - """ - Calculate the surface brightness temperature of the point sources. - - Parameters - ------------ - freq: `~astropy.units.Quantity` - Frequency, e.g., `1.0*au.MHz` - - Return - ------ - Tb_list: list - Point sources brightness temperature - """ - # Tb_list - num_ps = self.ps_catalog.shape[0] - Tb_list = np.zeros((num_ps,)) - sr_to_arcsec2 = (np.rad2deg(1) * 3600) ** 2 # [sr] -> [arcsec^2] - # Iteratively calculate Tb - for i in range(num_ps): - ps_area = self.ps_catalog['Area (sr)'][i] # [sr] - area = ps_area * sr_to_arcsec2 - Tb_list[i] = self.calc_single_Tb(area, freq) - - return Tb_list diff --git a/fg21sim/extragalactic/pointsources/starbursting.py b/fg21sim/extragalactic/pointsources/starbursting.py deleted file mode 100644 index 897d53f..0000000 --- a/fg21sim/extragalactic/pointsources/starbursting.py +++ /dev/null @@ -1,239 +0,0 @@ -# Copyright (c) 2016 Zhixian MA <zxma_sjtu@qq.com> -# MIT license - -import numpy as np -import healpy as hp - -from .psparams import PixelParams -from .base import BasePointSource -from ...utils import grid -from ...utils import convert - - -class StarBursting(BasePointSource): - - """ - Generate star forming point sources, inheritate from PointSource class. - """ - # Init - - def __init__(self, configs): - super().__init__(configs) - self.columns.append('radius (rad)') - self.nCols = len(self.columns) - self._set_configs() - # Number density matrix - self.rho_mat = self.calc_number_density() - # Cumulative distribution of z and lumo - self.cdf_z, self.cdf_lumo = self.calc_cdf() - - def _set_configs(self): - """Load the configs and set the corresponding class attributes""" - super()._set_configs() - pscomp = "extragalactic/pointsources/starbursting/" - # point sources amount - self.num_ps = self.configs.getn(pscomp+"numps") - # prefix - self.prefix = self.configs.getn(pscomp+"prefix") - # redshift bin - z_type = self.configs.getn(pscomp+"z_type") - if z_type == 'custom': - start = self.configs.getn(pscomp+"z_start") - stop = self.configs.getn(pscomp+"z_stop") - step = self.configs.getn(pscomp+"z_step") - self.zbin = np.arange(start, stop + step, step) - else: - self.zbin = np.arange(0.1, 10, 0.05) - # luminosity bin - lumo_type = self.configs.getn(pscomp+"lumo_type") - if lumo_type == 'custom': - start = self.configs.getn(pscomp+"lumo_start") - stop = self.configs.getn(pscomp+"lumo_stop") - step = self.configs.getn(pscomp+"lumo_step") - self.lumobin = np.arange(start, stop + step, step) - else: - self.lumobin = np.arange(21, 27, 0.1) # [W/Hz/sr] - - def calc_number_density(self): - """ - Calculate number density rho(lumo,z) of FRI - - References - ---------- - [1] Wilman et al., - "A semi-empirical simulation of the extragalactic radio continuum - sky for next generation radio telescopes", - 2008, MNRAS, 388, 1335-1348. - http://adsabs.harvard.edu/abs/2008MNRAS.388.1335W - - Returns - ------- - rho_mat: np.ndarray - Number density matris (joint-distribution of luminosity and - reshift). - """ - # Init - rho_mat = np.zeros((len(self.lumobin), len(self.zbin))) - # Parameters - # Refer to Willman's section 2.4 - alpha = 0.7 # spectral index - lumo_star = 10.0**22 # critical luminosity at 1400MHz - rho_l0 = 10.0**(-7) # normalization constant - z1 = 1.5 # cut-off redshift - k1 = 3.1 # index of space density revolution - # Calculation - for i, z in enumerate(self.zbin): - if z <= z1: - rho_mat[:, i] = ((rho_l0 * (10**self.lumobin / lumo_star) ** - (-alpha) * - np.exp(-10**self.lumobin / lumo_star)) * - (1 + z)**k1) - else: - rho_mat[:, i] = ((rho_l0 * (10**self.lumobin / lumo_star) ** - (-alpha) * - np.exp(-10**self.lumobin / lumo_star)) * - (1 + z1)**k1) - return rho_mat - - def get_radius(self): - if self.z <= 1.5: - self.radius = (1 + self.z)**2.5 * 1e-3 / 2 # [Mpc] - else: - self.radius = 10 * 1e-3 / 2 # [Mpc] - - return self.radius - - def gen_single_ps(self): - """ - Generate single point source, and return its data as a list. - """ - # Redshift and luminosity - self.z, self.lumo = self.get_lumo_redshift() - # angular diameter distance - self.param = PixelParams(self.z) - self.dA = self.param.dA - # W/Hz/Sr to Jy - dA = self.dA * 3.0856775814671917E+22 # Mpc to meter - self.lumo = self.lumo / dA**2 / (10.0**-24) # [Jy] - # Position - x = np.random.uniform(0, 1) - self.lat = (np.arccos(2 * x - 1) / np.pi * 180 - 90) # [deg] - self.lon = np.random.uniform(0, np.pi * 2) / np.pi * 180 # [deg] - # Radius - self.radius = self.param.get_angle(self.get_radius()) # [rad] - # Area - self.area = np.pi * self.radius**2 # [sr] - - ps_list = [self.z, self.dA, self.lumo, self.lat, self.lon, - self.area, self.radius] - - return ps_list - - def draw_single_ps(self, freq): - """ - Designed to draw the circular star forming and star bursting ps. - - Prameters - --------- - nside: int and dyadic - number of sub pixel in a cell of the healpix structure - self.ps_catalog: pandas.core.frame.DataFrame - Data of the point sources - freq: float - frequency - """ - # Init - npix = hp.nside2npix(self.nside) - hpmap = np.zeros((npix,)) - # Gen Tb list - Tb_list = self.calc_Tb(freq) - # Iteratively draw the ps - num_ps = self.ps_catalog.shape[0] - resolution = self.resolution / 60 # [degree] - for i in range(num_ps): - # grid - ps_radius = self.ps_catalog['radius (rad)'][i] # [rad] - ps_radius = ps_radius * 180 / np.pi # radius[rad] - c_lat = self.ps_catalog['Lat (deg)'][i] # core_lat [deg] - c_lon = self.ps_catalog['Lon (deg)'][i] # core_lon [deg] - # Fill with circle - lon, lat, gridmap = grid.make_grid_ellipse( - (c_lon, c_lat), (2 * ps_radius, 2 * ps_radius), resolution) - indices, values = grid.map_grid_to_healpix( - (lon, lat, gridmap), self.nside) - hpmap[indices] += Tb_list[i] - - return hpmap - - def draw_ps(self, freq): - """ - Read csv ps list file, and generate the healpix structure vector - with the respect frequency. - """ - # Init - num_freq = len(freq) - npix = hp.nside2npix(self.nside) - hpmaps = np.zeros((npix, num_freq)) - - # Gen ps_catalog - self.gen_catalog() - # get hpmaps - for i in range(num_freq): - hpmaps[:, i] = self.draw_single_ps(freq[i]) - - return hpmaps - - def calc_single_Tb(self, area, freq): - """ - Calculate brightness temperatur of a single ps - - Parameters - ------------ - area: float - Area of the PS - Unit: [arcsec^2] - freq: `~astropy.units.Quantity` - Frequency, e.g., `1.0*au.MHz` - - Return - ------ - Tb:`~astropy.units.Quantity` - Average brightness temperature, e.g., `1.0*au.K` - """ - # Init - freq_ref = 1400 # [MHz] - freq = freq # [MHz] - # Luminosity at 1400MHz - lumo_1400 = self.lumo # [Jy] - # Calc flux - flux = (freq / freq_ref)**(-0.7) * lumo_1400 - # Calc brightness temperature - Tb = convert.Fnu_to_Tb(flux, area, freq) - - return Tb - - def calc_Tb(self, freq): - """ - Calculate the surface brightness temperature of the point sources. - - Parameters - ------------ - freq: `~astropy.units.Quantity` - Frequency, e.g., `1.0*au.MHz` - - Return - ------ - Tb_list: list - Point sources brightness temperature - """ - # Tb_list - num_ps = self.ps_catalog.shape[0] - Tb_list = np.zeros((num_ps,)) - sr_to_arcsec2 = (np.rad2deg(1) * 3600) ** 2 # [sr] -> [arcsec^2] - # Iteratively calculate Tb - for i in range(num_ps): - ps_area = self.ps_catalog['Area (sr)'][i] # [sr] - area = ps_area * sr_to_arcsec2 - Tb_list[i] = self.calc_single_Tb(area, freq) - - return Tb_list diff --git a/fg21sim/extragalactic/pointsources/starforming.py b/fg21sim/extragalactic/pointsources/starforming.py deleted file mode 100644 index d4664bb..0000000 --- a/fg21sim/extragalactic/pointsources/starforming.py +++ /dev/null @@ -1,258 +0,0 @@ -# Copyright (c) 2016 Zhixian MA <zxma_sjtu@qq.com> -# MIT license - -import numpy as np -import healpy as hp - -# from .psparams import PixelParams -from .base import BasePointSource -from ...utils import grid -from ...utils import convert -from .psparams import PixelParams - - -class StarForming(BasePointSource): - """ - Generate star forming point sources, inheritate from PointSource class. - - Reference - --------- - [1] Fast cirles drawing - https://github.com/liweitianux/fg21sim/fg21sim/utils/draw.py - https://github.com/liweitianux/fg21sim/fg21sim/utils/grid.py - """ - - def __init__(self, configs): - super().__init__(configs) - self.columns.append('radius (rad)') - self.nCols = len(self.columns) - self._set_configs() - # Number density matrix - self.rho_mat = self.calc_number_density() - # Cumulative distribution of z and lumo - self.cdf_z, self.cdf_lumo = self.calc_cdf() - - def _set_configs(self): - """ Load the configs and set the corresponding class attributes""" - super()._set_configs() - pscomp = "extragalactic/pointsources/starforming/" - # point sources amount - self.num_ps = self.configs.getn(pscomp+"numps") - # prefix - self.prefix = self.configs.getn(pscomp+"prefix") - # redshift bin - z_type = self.configs.getn(pscomp+"z_type") - if z_type == 'custom': - start = self.configs.getn(pscomp+"z_start") - stop = self.configs.getn(pscomp+"z_stop") - step = self.configs.getn(pscomp+"z_step") - self.zbin = np.arange(start, stop + step, step) - else: - self.zbin = np.arange(0.1, 10, 0.05) - # luminosity bin - lumo_type = self.configs.getn(pscomp+"lumo_type") - if lumo_type == 'custom': - start = self.configs.getn(pscomp+"lumo_start") - stop = self.configs.getn(pscomp+"lumo_stop") - step = self.configs.getn(pscomp+"lumo_step") - self.lumobin = np.arange(start, stop + step, step) - else: - self.lumobin = np.arange(17, 25.5, 0.1) # [W/Hz/sr] - - def calc_number_density(self): - """ - Calculate number density rho(lumo,z) of FRI - - References - ---------- - [1] Wilman et al., - "A semi-empirical simulation of the extragalactic radio continuum - sky for next generation radio telescopes", - 2008, MNRAS, 388, 1335-1348. - http://adsabs.harvard.edu/abs/2008MNRAS.388.1335W - - Returns - ------- - rho_mat: np.ndarray - Number density matris (joint-distribution of luminosity and - reshift). - """ - # Init - rho_mat = np.zeros((len(self.lumobin), len(self.zbin))) - # Parameters - # Refer to Willman's section 2.4 - alpha = 0.7 # spectral index - lumo_star = 10.0**22 # critical luminosity at 1400MHz - rho_l0 = 10.0**(-7) # normalization constant - z1 = 1.5 # cut-off redshift - k1 = 3.1 # index of space density revolution - # Calculation - for i, z in enumerate(self.zbin): - if z <= z1: - rho_mat[:, i] = (rho_l0 * (10**self.lumobin / lumo_star) ** - (-alpha) * np.exp(-10**self.lumobin / - lumo_star) * (1 + z)**k1) - else: - rho_mat[:, i] = (rho_l0 * (10**self.lumobin / lumo_star) ** - (-alpha) * np.exp(-10**self.lumobin / - lumo_star) * (1 + z1)**k1) - - return rho_mat - - def get_radius(self): - """ - Generate the disc diameter of normal starforming galaxies. - - Reference - --------- - [1] Wilman et al., Eq(7-9), - "A semi-empirical simulation of the extragalactic radio continuum - sky for next generation radio telescopes", - 2008, MNRAS, 388, 1335-1348. - http://adsabs.harvard.edu/abs/2008MNRAS.388.1335W - """ - # Willman Eq. (8) - delta = np.random.normal(0, 0.3) - log_M_HI = 0.44 * np.log10(self.lumo) + 0.48 + delta - # Willman Eq. (7) - log_D_HI = ((log_M_HI - (6.52 + np.random.uniform(-0.06, 0.06))) / - 1.96 + np.random.uniform(-0.04, 0.04)) - # Willman Eq. (9) - log_D = log_D_HI - 0.23 - np.log10(1 + self.z) - self.radius = 10**log_D / 2 * 1e-3 # [Mpc] - return self.radius - - def gen_single_ps(self): - """ - Generate single point source, and return its data as a list. - """ - # Redshift and luminosity - self.z, self.lumo = self.get_lumo_redshift() - # angular diameter distance - self.param = PixelParams(self.z) - self.dA = self.param.dA - # Radius - self.radius = self.param.get_angle(self.get_radius()) # [rad] - # W/Hz/Sr to Jy - dA = self.dA * 3.0856775814671917E+22 # Mpc to meter - self.lumo = self.lumo / dA**2 / (10.0**-24) # [Jy] - # Position - x = np.random.uniform(0, 1) - self.lat = (np.arccos(2 * x - 1) / np.pi * 180 - 90) # [deg] - self.lon = np.random.uniform(0, np.pi * 2) / np.pi * 180 # [deg] - # Area - self.area = np.pi * self.radius**2 # [sr] ? - - ps_list = [self.z, self.dA, self.lumo, self.lat, self.lon, - self.area, self.radius] - - return ps_list - - def draw_single_ps(self, freq): - """ - Designed to draw the circular star forming and star bursting ps. - - Prameters - --------- - nside: int and dyadic - number of sub pixel in a cell of the healpix structure - self.ps_catalog: pandas.core.frame.DataFrame - Data of the point sources - freq: float - frequency - """ - # Init - npix = hp.nside2npix(self.nside) - hpmap = np.zeros((npix,)) - # Gen Tb list - Tb_list = self.calc_Tb(freq) - # Iteratively draw the ps - num_ps = self.ps_catalog.shape[0] - resolution = self.resolution / 60 # [degree] - for i in range(num_ps): - # grid - ps_radius = self.ps_catalog['radius (rad)'][i] # [rad] - ps_radius = ps_radius * 180 / np.pi # radius [deg] - c_lat = self.ps_catalog['Lat (deg)'][i] # core_lat [deg] - c_lon = self.ps_catalog['Lon (deg)'][i] # core_lon [deg] - # Fill with circle - lon, lat, gridmap = grid.make_grid_ellipse( - (c_lon, c_lat), (2 * ps_radius, 2 * ps_radius), resolution) - indices, values = grid.map_grid_to_healpix( - (lon, lat, gridmap), self.nside) - hpmap[indices] += Tb_list[i] - - return hpmap - - def draw_ps(self, freq): - """ - Read csv ps list file, and generate the healpix structure vector - with the respect frequency. - """ - # Init - num_freq = len(freq) - npix = hp.nside2npix(self.nside) - hpmaps = np.zeros((npix, num_freq)) - - # Gen ps_catalog - self.gen_catalog() - # get hpmaps - for i in range(num_freq): - hpmaps[:, i] = self.draw_single_ps(freq[i]) - - return hpmaps - - def calc_single_Tb(self, area, freq): - """ - Calculate brightness temperatur of a single ps - - Parameters - ------------ - area: float - Area of the PS - Unit: [arcsec^2] - freq: `~astropy.units.Quantity` - Frequency, e.g., `1.0*au.MHz` - - Return - ------ - Tb:`~astropy.units.Quantity` - Average brightness temperature, e.g., `1.0*au.K` - """ - # Init - freq_ref = 1400 # [MHz] - freq = freq # [MHz] - # Luminosity at 1400MHz - lumo_1400 = self.lumo # [Jy] - # Calc flux - flux = (freq / freq_ref)**(-0.7) * lumo_1400 - # Calc brightness temperature - Tb = convert.Fnu_to_Tb(flux, area, freq) - - return Tb - - def calc_Tb(self, freq): - """ - Calculate the surface brightness temperature of the point sources. - - Parameters - ------------ - freq: `~astropy.units.Quantity` - Frequency, e.g., `1.0*au.MHz` - - Return - ------ - Tb_list: list - Point sources brightness temperature - """ - # Tb_list - num_ps = self.ps_catalog.shape[0] - Tb_list = np.zeros((num_ps,)) - sr_to_arcsec2 = (np.rad2deg(1) * 3600) ** 2 # [sr] -> [arcsec^2] - # Iteratively calculate Tb - for i in range(num_ps): - ps_area = self.ps_catalog['Area (sr)'][i] # [sr] - area = ps_area * sr_to_arcsec2 - Tb_list[i] = self.calc_single_Tb(area, freq) - - return Tb_list |